In this article we analyze a well-known and extensively researched problem: how to find all datasets, on the one hand, and on the other hand only those that are of value to the user when dealing with a specific spatially oriented task. In analogy with existing approaches to a similar problem from other fields of human endeavor, we call this software solution 'a spatial data recommendation service.' In its final version, this service should be capable of matching requests created in the user's mind with the content of the existing datasets, while taking into account the user's preferences obtained from the user's previous use of the service. As a result, the service should recommend a list of datasets best suited to the user's needs. In this regard, we consider metadata, particularly natural language definitions of spatial entities, a crucial piece of the solution. To be able to use this information in the process of matching the user's request with the dataset content, this information must be semantically preprocessed. To automate this task we have applied a machine learning approach. With inductive logic programming (ILP) our system learns rules that identify and extract values for the five most frequent relations/properties found in Slovene natural language definitions of spatial entities. The initially established quality criterion for identifying and extracting information was met in three out of five examples. Therefore we conclude that ILP offers a promising approach to developing an information extraction component of a spatial data recommendation service.
Klju~ne besede: ESRI ArcIMS, digitalni prostorski podatki, GIS, Slovenija Key words: ESRI ArcIMS, digital spatial data, GIS, Slovenia
PovzetekGeolo{ki zavod Slovenije je zaradi narave svojega dela, v zadnjih letih pridobil {tevilne digitalne prostorske podatke razli~nih virov in meril. Koli~ina podatkov se konstantno pove~uje, zato je bilo potrebno te prostorske podatke organizirati v enotno podatkovno zbirko, do katere bi imeli uporabniki neposreden dostop. Za pregledovanje organiziranih prostorskih podatkov je bil izbran ESRI programski paket ArcIMS, medtem ko je bilo za samo organizacijo prostorskih podatkov ter nekatere pomembnej{e zahteve (npr. izrezovanje rastrskih podatkov za izbrano obmo~je) treba nadgraditi omenjeno spletno re{itev z dodatnimi programskimi moduli. V ~lanku so predstavljene re{itve organizacije prostorskih podatkov.
AbstractGeologic Survey of Slovenia acquired, in the last few years numerous digital spatial data of various sources and scales. Amounts of data constantly increased which lead to considerations on their organization in a unique collection to which the users could have direct access. For surveying the already organized spatial data the ESRI ArcIMS program was selected, whereas for organization of spatial data themselves and for certain specific users requirements (cropping of raster data to a selected domain) the mentioned GIS internet solution had to be upgraded with additional program modules. In the following paper factual internet GIS solutions shall be presented especially from the aspect of simplification and increased efficiency of existing working procedures.
GEOLOGIJA 48/2, 355-361, Ljubljana 2005
UvodDanes se za obdelavo prostorskih podatkov ter predstavitev rezultatov dela uporabljajo sodobne tehnologije geografskih informacijskih sistemov (v nadaljevanju GIS). @e nekaj let se zajemajo digitalni prostorski podatki na osnovi obstoje~ih analognih podatkov, terenskih podatkov ali drugih podatkovnih virov. S tem pa se pove~ujejo evidence prostorskih podatkov v digitalni obliki.Na Geolo{kem zavodu Slovenije uporabljamo tehnologijo GIS in digitalne prostorske podatke 'e ve~ kot 10 let. Geolo{ki zavod Slovenije je ob uvedbi digitalnih prostorskih podatkov, ki jih izdeluje in izdaja Geodetska uprava RS, ter prehodu na digitalne predstavitve, pri~el pridobivati digitalne kartografske
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.