Objectives Deep-learning image reconstruction (DLIR) offers unique opportunities for reducing image noise without degrading image quality or diagnostic accuracy in coronary CT angiography (CCTA). The present study aimed at exploiting the capabilities of DLIR to reduce radiation dose and assess its impact on stenosis severity, plaque composition analysis, and plaque volume quantification. Methods This prospective study includes 50 patients who underwent two sequential CCTA scans at normal-dose (ND) and lower-dose (LD). ND scans were reconstructed with Adaptive Statistical Iterative Reconstruction-Veo (ASiR-V) 100%, and LD scans with DLIR. Image noise (in Hounsfield units, HU) and quantitative plaque volumes (in mm3) were assessed quantitatively. Stenosis severity was visually categorized into no stenosis (0%), stenosis (< 20%, 20–50%, 51–70%, 71–90%, 91–99%), and occlusion (100%). Plaque composition was classified as calcified, non-calcified, or mixed. Results Reduction of radiation dose from ND scans with ASiR-V 100% to LD scans with DLIR at the highest level (DLIR-H; 1.4 mSv vs. 0.8 mSv, p < 0.001) had no impact on image noise (28 vs. 27 HU, p = 0.598). Reliability of stenosis severity and plaque composition was excellent between ND scans with ASiR-V 100% and LD scans with DLIR-H (intraclass correlation coefficients of 0.995 and 0.974, respectively). Comparison of plaque volumes using Bland–Altman analysis revealed a mean difference of − 0.8 mm3 (± 2.5 mm3) and limits of agreement between − 5.8 and + 4.1 mm3. Conclusion DLIR enables a reduction in radiation dose from CCTA by 43% without significant impact on image noise, stenosis severity, plaque composition, and quantitative plaque volume. Key Points •Deep-learning image reconstruction (DLIR) enables radiation dose reduction by over 40% for coronary computed tomography angiography (CCTA). •Image noise remains unchanged between a normal-dose CCTA reconstructed by ASiR-V and a lower-dose CCTA reconstructed by DLIR. •There is no impact on the assessment of stenosis severity, plaque composition, and quantitative plaque volume between the two scans.
Aim The current proof-of-concept study investigates the value of radiomic features from normal 13N-ammonia positron emission tomography (PET) myocardial retention images to identify patients with reduced global myocardial flow reserve (MFR). Methods Data from 100 patients with normal retention 13N-ammonia PET scans were divided into two groups, according to global MFR (i.e., < 2 and ≥ 2), as derived from quantitative PET analysis. We extracted radiomic features from retention images at each of five different gray-level (GL) discretization (8, 16, 32, 64, and 128 bins). Outcome independent and dependent feature selection and subsequent univariate and multivariate analyses was performed to identify image features predicting reduced global MFR. Results A total of 475 radiomic features were extracted per patient. Outcome independent and dependent feature selection resulted in a remainder of 35 features. Discretization at 16 bins (GL16) yielded the highest number of significant predictors of reduced MFR and was chosen for the final analysis. GLRLM_GLNU was the most robust parameter and at a cut-off of 948 yielded an accuracy, sensitivity, specificity, negative and positive predictive value of 67%, 74%, 58%, 64%, and 69%, respectively, to detect diffusely impaired myocardial perfusion. Conclusion A single radiomic feature (GLRLM_GLNU) extracted from visually normal 13N-ammonia PET retention images independently predicts reduced global MFR with moderate accuracy. This concept could potentially be applied to other myocardial perfusion imaging modalities based purely on relative distribution patterns to allow for better detection of diffuse disease.
Co-premiers auteursVous trouverez le commentaire relatif à cet article à la page 650 de ce numéro.
Objective: In the following clinical case we focused on the differential diagnosis in case of fever and neurological symptoms after a trip to the tropics. Methods: The diagnosis was made through clinical and laboratory tests. Results: A healthy 25-year-old woman comes to her family doctor with a fever that appeared 3 days after returning from a trip to Brazil that sends her to hospital for suspected meningitis. Serologies reveal a positivity for Dengue (Dengue IgG rapid test negativ, Dengue IgM rapid test positiv, Dengue rapid test NS1 Antigen positiv). Conclusion: Treatment of Dengue is in most cases symptomatic. Cases of severe dengue are rare. The vaccine is recommended for people aged 9 to 45 who have already been infected with dengue in the past and who live in areas where Dengue is endemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.