This paper proposes a heuristic method for calculating the capacity of a set of residential photovoltaic-battery systems in providing upward flexibility services to the grid in an energy communities framework. The proposed method has been designed to calculate the upward service capacity in a few minutes, assuming a scenario where the grid operator urgently needs an upward service in a specific area. The proposed method calculates the service capacity by exploiting the PV overgeneration and the state of charge of batteries, adopting a distributed approach. If the service capacity varies relevantly over time, a centralized approach is considered allowing the service capacity to remain constant over time. An algorithm is provided that implements the proposed heuristic method that can be easily translated into a software code and solved even in the absence of specific skills and expensive high-level computational tools, i.e. using costeffective single-board computers. The main benefits and advantages of the proposed method are due to its applicability in real-time problems and to its simplicity which makes it easy to be translated into software code and solved even in the absence of specific skills and high-level computational tools. Therefore, it is a simple and advantageous solution, especially for small energy communities. The numerical results demonstrate the effectiveness of the proposed method and algorithm, studying a set of four residential photovoltaic-battery systems and real input data. For this test case, the algorithm returns a flat service capacity of approximately 8 kW which remains perfectly constant for 1-hour. Lastly, the performance of the proposed heuristic method is compared with the solution of two optimization problems aiming at the same scope.
Today, increasing numbers of batteries are installed in residential and commercial buildings; by coordinating their operation, it is possible to favor both the exploitation of renewable sources and the safe operation of electricity grids. However, how can this multitude of battery storage systems be coordinated? Using the Application Programming Interfaces of the storage systems’ manufacturers is a feasible solution, but it has a huge limitation: communication to and from storage systems must necessarily pass through the manufacturers’ cloud infrastructure. Therefore, this article presents an IoT-based solution which allows monitoring/controlling battery storage systems, independently from the manufacturers’ cloud infrastructure. More specifically, a home gateway locally controls the battery storage using local APIs via Wi-Fi on the condition that the manufacturer enables them. If not, an auxiliary device allows the home gateway to establish a wired communication with the battery storage via the SunSpec protocol. Validations tests demonstrate the effectiveness of the proposed IoT solution in monitoring and controlling ABB, Sonnen and SolarEdge storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.