The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.
Self-renewal and proliferation of neural stem cells and the decision to initiate neurogenesis are the crucial events directing brain development. Here we show that the ubiquitin ligase Huwe1 operates upstream of the N-Myc-DLL3-Notch pathway to control neural stem cell activity and promote neurogenesis. Conditional inactivation of the Huwe1 gene in the mouse brain caused neonatal lethality associated with disorganization of the laminar patterning of the cortex. These defects stemmed from severe impairment of neurogenesis associated with uncontrolled expansion of the neural stem cell compartment. Loss and gain of function experiments for Huwe1 in the mouse cortex demonstrated that Huwe1 restrains proliferation and enables neuronal differentiation by suppressing the N-Myc-DLL3 cascade. Notably, human high-grade gliomas carry focal hemizygous deletions of the X-linked Huwe1 gene in association with amplification of the N-myc locus. Our results indicate that Huwe1 is a master regulator of the balance between proliferation and neurogenesis in the developing brain and this pathway is subverted in malignant brain tumors.
Clusterin is overexpressed during tissue and cell involution and downregulated in proliferating cells. Its role in cell survival, cell death and neoplastic transformation remains debated. We studied the expression and distribution of clusterin mRNA and protein in human prostate carcinoma (CaP) specimens of different degrees of malignancy. Fresh CaP specimens were obtained from 25 patients subjected to longterm androgen ablation before surgery. Clusterin expression was studied by Northern and Western analysis, in situ hybridization and immunohistochemistry, in comparison with Gas1 and histone H3 mRNA (markers of cell quiescence and S phase of the cell cycle, respectively). Clusterin is downregulated in CaP in comparison with matched benign controls. In low-grade CaP, clusterin colocalized with Gas1 to the stromal compartment, and in some glands, the basal lamina was heavily stained. In high-grade CaP clusterin stained the remnants of stromal matrix while histone H3 localized to cancer cells, which were very rarely clusterin positive. High clusterin expression was found in the branches of a nerve infiltrated by tumor. The periglandular clusterin expression found in lowgrade CaP could result from induction of quiescence and/or apoptosis of prostatic fibroblasts lining those glands in which tumor invasion is at an initial stage, involving basal lamina. In advanced CaP, the staining of the remnants of the extracellular matrix suggests a role for clusterin in the process of dismantling the stromal organization caused by cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.