Shape control of adaptive wings has the potential to improve aircraft aerodynamic performance during cruise. In recent years, several patents have been issued for inventions in the field of morphing wings, using hydraulic, electromechanical or smart material-based actuation concepts and architectures. In the framework of SARISTU project (EUFP7), the joint integration of different conformal morphing concepts in a laminar wing is investigated to improve aircraft performance through a 6% drag reduction, with a positive effect on fuel consumption and required take-off fuel load. An innovative seamless morphing wing incorporating a gapless morphing leading edge, a morphing trailing edge and a wingtip active trailing edge is developed to pursue optimal wing geometry for any flight condition. This paper proposes a state of the art technology to design the actuation system of a morphing trailing edge, consisting of a flexible outer skin and an internal driving mechanism. Focus is given to the modeling and analysis of the morphing actuation, and its integration in the seamless flexible trailing edge control surface. The actuation system is driven by servo rotary actuators and it is designed and established to control the wing trailing edge in order to obtain pre-defined airfoil shapes maximizing wing aerodynamic efficiency. The actuation concept relies on a quick-return mechanism driven by load-bearing actuators controlling the morphing ribs individually. The actuation system is both analytically and numerically addressed. To validate the design, experiments are then carried out with the purpose of estimating the control movement functions suitable for single airfoil camber variations. The morphing rib kinematics including the actuation system is designed to withstand operational pressure loads and actuation forces
It is the aim of this paper to present the design of a sensor system based on fiber Bragg gratings (FBG) for the strain monitoring of an adaptive trailing edge (ATE) device. Some of the activities herein showed comes from developments inside the project SARISTU (EU-FP7), funded by the European Union inside the VII Framework Programme and focused on smart aircraft structures. Because the TE is immerged into 3D structural and aerodynamic fields, the sensor system network should have chord-and span-wise features. The ATE device will be equipped with a shape monitoring system using a widely distributed sensors based on fiber optic (FO) elements herein referred to, mainly with the aim of reducing the number of channels (then expense, complexity, etc.). In what follows, the mathematical modelling of a sensor system concept based on FBG is applied to evaluate the chord-wise strain of a trailing edge device. A hinge rotation detection capabilities based on strain measurements is presented. The detection and process of data concerning the in-flight ATE local deformation are necessary to reconstruct the shape produced by the action of a dedicated actuation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.