Given a general physical network and measurements of node dynamics, methods are proposed for reconstructing the network topology. We focus on networks whose connections are sparse and where data are limited. Under these conditions, common in many biological networks, constrained optimization techniques based on the L1 vector norm are found to be superior for inference of the network connections.
In this paper we will offer a few examples to illustrate the orientation of contemporary research in data analysis and we will investigate the corresponding role of mathematics. We argue that the modus operandi of data analysis is implicitly based on the belief that if we have collected enough and sufficiently diverse data, we will be able to answer most relevant questions concerning the phenomenon itself. This is a methodological paradigm strongly related, but not limited to, biology, and we label it the microarray paradigm. In this new framework, mathematics provides powerful techniques and general ideas which generate new computational tools. But it is missing any explicit isomorphism between a mathematical structure and the phenomenon under consideration. This methodology used in data analysis suggests the possibility of forecasting and analyzing without a structured and general understanding. This is the perspective we propose to call agnostic science, and we argue that, rather than diminishing or flattening the role of mathematics in science, the lack of isomorphisms with phenomena liberates mathematics, paradoxically making more likely the practical use of some of its most sophisticated ideas.
a b s t r a c tThe problem of reconstructing and identifying intracellular protein signaling and biochemical networks is of critical importance in biology. We propose a mathematical approach called augmented sparse reconstruction for the identification of links among nodes of ordinary differential equation (ODE) networks, given a small set of observed trajectories with various initial conditions. As a test case, the method is applied to the epidermal growth factor receptor (EGFR) driven signaling cascade, a wellstudied and clinically important signaling network. Our method builds a system of representation from a collection of trajectory integrals, selectively attenuating blocks of terms in the representation. The system of representation is then augmented with random vectors, and l 1 minimization is used to find sparse representations for the dynamical interactions of each node. After showing the performance of our method on a model of the EGFR protein network, we sketch briefly the potential future therapeutic applications of this approach.
Abstract. Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.