Protein synthesis inhibitors block the maintenance of NMDA receptor-dependent long-term potentiation (LTP) both in vivo and in vitro. Protein synthesis inhibitors block mossy fiber(MF) LTP maintenance in vitro, but little is known about the effect of protein synthesis inhibitors on either induction or maintenance in MF-LTP in vivo. Here we study the role of protein synthesis in the induction of long-term potentiation at the mossy fiber-CA3 hippocampal synapse in vivo in anesthetized rats. The protein synthesis inhibitor anisomycin was administered at different doses (0.04, 10, or 40 nmol) into area CA3 15 min before delivering high-frequency stimulation (two times at 100 Hz, 1 sec). Anisomycin blocked MF-LTP induction in a dose-dependent manner; both 40 and 10 nmol blocked MF-LTP induction, but a lower dose of 0.04 nmol was without effect. The inhibitory effect of anisomycin on protein synthesis was determined by measuring the incorporation of [35 S]methionine into the newly synthesized proteins. Percentages of protein synthesis inhibition were determined by comparing [35 S] incorporation of anisomycin-treated samples with vehicle controls. Doses of 0.04, 10, or 40 nmol of anisomycin produced 21, 82, or 83% inhibition of [35 S]methionine incorporation, respectively. The effect of anisomycin was verified using a single dose of the protein synthesis inhibitor cycloheximide (40 nmol). Cycloheximide also blocked MF-LTP induction. These results suggest that protein synthesis plays an important role in the induction of mossy fiber long-term potentiation in vivo.
It was recently shown that, in addition to the well‐established microtubule‐dependent mechanism, fast transport of organelles in squid giant axons also occurs in the presence of actin filaments [Kuznetsov et al., 1992, Nature 356:722‐725]. The objectives of this study were to obtain direct evidence of axoplasmic organelle movement on actin filaments and to demonstrate that these organelles are able to move on skeletal muscle actin filaments. Organelles and actin filaments were visualized by video‐enhanced contrast differential interference contrast (AVEC‐DIC) microscopy and by video intensified fluorescence microscopy. Actin filaments, prepared by polymerization of monomeric actin purified from rabbit skeletal muscle, were stabilized with rhodamine‐phalloidin and adsorbed to cover slips. When axoplasm was extruded on these cover slips in the buffer containing cytochalasin B that prevents the formation of endogenous axonal actin filaments, organelles were observed to move at the fast transport rate. Also, axoplasmic organelles were observed to move on bundles of actin filaments that were of sufficient thickness to be detected directly by AVEC‐DIC microscopy. The range of average velocities of movement on the muscle actin filaments was not statistically different from that on axonal filaments. The level of motile activity (number of organelles moving/min/field) on the exogenous filaments was less than on endogenous filaments probably due to the entanglement of filaments on the cover slip surface. We also found that calmodulin (CaM) increased the level of motile activity of organelles on actin filaments. In addition, CaM stimulated the movement of elongated membranous organelles that appeared to be tubular elements of smooth endoplasmic reticulum or extensions of prelysosomes. These studies provide the first direct evidence that organelles from higher animal cells such as neurons move on biochemically defined actin filaments. © 1994 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.