Inflammatory lung diseases are highly complex in respect of pathogenesis and relationships between inflammation, clinical disease and response to treatment. Sophisticated large-scale analytical methods to quantify gene expression (transcriptomics), proteins (proteomics), lipids (lipidomics) and metabolites (metabolomics) in the lungs, blood and urine are now available to identify biomarkers that define disease in terms of combined clinical, physiological and patho-biological abnormalities. The aspiration is that these approaches will improve diagnosis, i.e. define pathological phenotypes, and facilitate the monitoring of disease and therapy, and also, unravel underlying molecular pathways. Biomarker studies can either select predefined biomarker(s) measured by specific methods or apply an ''unbiased'' approach involving detection platforms that are indiscriminate in focus. This article reviews the technologies presently available to study biomarkers of lung disease within the 'omics field. The contributions of the individual 'omics analytical platforms to the field of respiratory diseases are summarised, with the goal of providing background on their respective abilities to contribute to systems medicine-based studies of lung disease. @ERSpublications Summary of the application of 'omics-based analytical platforms for biomarker discovery in inflammatory lung diseases
burtonii has a high "IQ" (a measure of adaptive potential) compared to many methanogens.Numerous genes in these two over-represented COG categories appear to have been acquired from ε-and δ-proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they play an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over the last several thousand years as it adapted from a marine, to an Antarctic lake environment.
Cancer cachexia/anorexia is a complex syndrome that involves profound metabolic imbalances and is directly implicated as a cause of death in at least 20% to 30% of all cancers. Brown adipose tissue (BAT) plays a key role in thermogenesis and energy balance and potentially contributes to the physiologic perturbations associated with cachexia. In this study, we investigated the impact of cachexia-inducing colorectal tumor on BAT in mice. We found that brown adipocytes were smaller and exhibited profound delipidation in cachectic tumor-bearing mice. Diurnal expression profiling of key regulators of lipid accumulation and fatty acid β-oxidation and their corresponding target genes revealed dramatic molecular changes indicative of active BAT. Increased Ucp1, Pbe, and Cpt1α expression at specific points coincided with higher BAT temperatures during the dark cycle, suggestive of a temporal stimulation of thermogenesis in cachexia. These changes persisted when cachectic mice were acclimatized to 28°C confirming inappropriate stimulation of BAT despite thermoneutrality. Evidence of inflammatory signaling also was observed in the BAT as an energetically wasteful and maladaptive response to anorexia during the development of cachexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.