Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground sources of drinking water. In particular, concern is warranted regarding the potential for CO(2) leakage through geological features and abandoned wells that may result in detrimental perturbations to subsurface geochemistry. Reaction path and kinetic models indicate that geochemical shifts caused by CO(2) leakage are closely linked to mineralogical properties of the receiving aquifer. CO(2) gas dissolution into groundwater and subsequent reaction with aquifer minerals will control the evolution of pH-bicarbonate envelopes. These parameters provide geochemical context for predicting how regulated contaminants associated with aquifer solids will respond via various mineral-water reaction processes. The distribution and abundance of carbonate, silicate, oxide, and phyllosilicate minerals are identified as key variables in controlling changes in groundwater geochemistry. Site-specific risk assessments may require characterization of aquifer geology, mineralogy, and groundwater chemistry prior to CO(2) injection. Model results also provide a frame of reference for developing indicative measurement, monitoring, and verification (MMV) protocols for groundwater protection.
A comprehensive analysis of all publicly available data and reports was conducted to evaluate impact to Underground Sources of Drinking Water (USDWs) as a result of acid stimulation and hydraulic fracturing in the Pavillion, WY, Field. Although injection of stimulation fluids into USDWs in the Pavillion Field was documented by EPA, potential impact to USDWs at the depths of stimulation as a result of this activity was not previously evaluated. Concentrations of major ions in produced water samples outside expected levels in the Wind River Formation, leakoff of stimulation fluids into formation media, and likely loss of zonal isolation during stimulation at several production wells, indicates that impact to USDWs has occurred. Detection of organic compounds used for well stimulation in samples from two monitoring wells installed by EPA, plus anomalies in major ion concentrations in water from one of these monitoring wells, provide additional evidence of impact to USDWs and indicate upward solute migration to depths of current groundwater use. Detections of diesel range organics and other organic compounds in domestic wells <600 m from unlined pits used prior to the mid-1990s to dispose diesel-fuel based drilling mud and production fluids suggest impact to domestic wells as a result of legacy pit disposal practices.
Reports highlight the safety of hydraulic fracturing for drinking water if it occurs "many hundreds of meters to kilometers underground". To our knowledge, however, no comprehensive analysis of hydraulic fracturing depths exists. Based on fracturing depths and water use for ∼44,000 wells reported between 2010 and 2013, the average fracturing depth across the United States was 8300 ft (∼2500 m). Many wells (6900; 16%) were fractured less than a mile from the surface, and 2600 wells (6%) were fractured above 3000 ft (900 m), particularly in Texas (850 wells), California (720), Arkansas (310), and Wyoming (300). Average water use per well nationally was 2,400,000 gallons (9,200,000 L), led by Arkansas (5,200,000 gallons), Louisiana (5,100,000 gallons), West Virginia (5,000,000 gallons), and Pennsylvania (4,500,000 gallons). Two thousand wells (∼5%) shallower than one mile and 350 wells (∼1%) shallower than 3000 ft were hydraulically fractured with >1 million gallons of water, particularly in Arkansas, New Mexico, Texas, Pennsylvania, and California. Because hydraulic fractures can propagate 2000 ft upward, shallow wells may warrant special safeguards, including a mandatory registry of locations, full chemical disclosure, and, where horizontal drilling is used, predrilling water testing to a radius 1000 ft beyond the greatest lateral extent.
Site closure for soil vacuum extraction (SVE) application typically requires attainment or specified soil concentration standards based on the premise that mass flux from the vadose zone to ground water not result in levels exceeding maximum contaminant levels (MCLs). Unfortunately, realization of MCLs in ground water may not be attainable at many sites. This results in soil remediation efforts that may be in excess of what is necessary for future protection of ground water and soil remediation goals which often cannot be achieved within a reasonable time period. Soil venting practitioners have attempted to circumvent these problems by basing closure on some predefined percent total mass removal, or an approach to a vapor concentration asymptote. These approaches, however, are subjective and influenced by venting design. We propose an alternative strategy based on evaluation of five components: (1) site characterization, (2) design. (3) performance monitoring, (4) rule‐limited vapor transport, and (5) mass flux to and from ground water. Demonstration of closure is dependent on satisfactory assessment of all five components. The focus of this paper is to support mass flux evaluation. We present a plan based on monitoring of three subsurface zones and develop an analytical one‐dimensional vertical flux model we term VFLUX. VFLUX is a significant improvement over the well‐known numerical one‐dimensional model. VLEACH, which is often used for estimation of mass flux to ground water, because it allows for the presence of nonaqueous phase liquids (NAPLs) in soil, degradation, and a lime‐dependent boundary condition at the water table inter‐face. The time‐dependent boundary condition is the center‐piece of our mass flux approach because it dynamically links performance of ground water remediation lo SVE closure. Progress or lack of progress in ground water remediation results in either increasingly or decreasingly stringent closure requirements, respectively.
The San Joaquin Valley (SJV) in California is one of the most agriculturally productive regions in the world relying in part on groundwater for irrigation and for domestic or municipal water supply for nearly 4 million residents. One area of growing concern in the SJV is potential impact to groundwater resources from ongoing and historical disposal of oilfield-produced water into unlined produced water ponds (PWPs). In this investigation, we utilized available information on composition of produced water disposed into unlined PWPs and levels of total dissolved solids in underlying groundwater to demonstrate that this disposal practice, both past and present, poses risks to groundwater resources, especially in the Tulare Basin in the southern SJV. Groundwater monitoring at unlined PWP facilities is relatively sparse, but where monitoring has occurred, impact to aquifers used for public and agricultural water supply has been observed and has proven to be too expensive to actively remediate. Results of this investigation should inform policy discussions in California and other locations where disposal of produced water into unlined impoundments occurs, especially at locations that overlie groundwater resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.