Methylcellulose (MC)-based films were prepared by casting from its 1% aqueous solution containing 0.5% vegetable oil, 0.25% glycerol, and 0.025% Tween 80. Puncture strength (PS), puncture deformation (PD), viscoelasticity coefficient, and water vapor permeability (WVP) were found to be 147 N/mm, 3.46 mm, 41%, and 6.34 g.mm/m(2).day.kPa, respectively. Aqueous nanocellulose (NC) solution (0.1-1%) was incorporated into the MC-based formulation, and it was found that PS was improved (117%) and WVP was decreased (26%) significantly. Films containing 0.25% NC were found to be the optimum. Then films were exposed to gamma radiation (0.5-50 kGy), and it was revealed that mechanical properties of the films were slightly decreased after irradiation, whereas barrier properties were further improved with a decrease of WVP to 28.8% at 50 kGy. Molecular interactions due to incorporation of NC were supported by FTIR spectroscopy. Thermal properties of the NC-containing films were improved, confirmed by TGA and DSC. Crystalline peaks appeared due to NC addition, found by XRD. Micrographs of films containing NC were investigated by SEM.
Nanocrystalline cellulose (NCC) reinforced poly(caprolactone) (PCL) composites were prepared by compression molding. The NCC content varied from 2 to 10% by weight. NCC played a significant role in improving the mechanical properties of PCL. The addition of 5 wt % NCC caused a 62% improvement of the tensile strength (TS) value of PCL films. Similarly, tensile modulus (TM) values were also improved by NCC reinforcement but elongation at break (Eb) values decreased montonically with NCC content. The water vapor permeability (WVP) of PCL was 1.51 gÁmm/m 2 ÁdayÁkPa, whereas PCL films containing 5 wt % NCC showed a WVP of 1.22 gÁmm/m 2 ÁdayÁkPa. The oxygen transmission rate (OTR) and carbon dioxide transmission rate (CO 2 TR) of PCL decreased by 19 and 17%, respectively, with 5 wt % NCC incorporation. It was found that the mechanical and barrier properties of both PCL and PCL-NCC composites further improved with 10 kGy gamma irradiation treatment. The combination of NCC and radiation significantly increased the TS, TM, and Eb (by 156, 123, and 80%, respectively, compared to untreated PCL). The WVP, OTR, and CO 2 TR decreased by 25-35% with respect to untreated PCL. The surface and interface morphologies of the PCL-NCC composites were studied by scanning electron microscopy and suggested homogeneous distribution of NCC within the PCL matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.