Background: Commercial shipping is identified as a major source of anthropogenic underwater noise in several ecologically sensitive areas. Any development project likely to increase marine traffic can thus be required to assess environmental impacts of underwater noise. Therefore, project holders are increasingly engaging in underwater noise modeling relying on ships' underwater noise source levels published in the literature. However, a lack of apparent consensus emerges from the scientific literature as discrepancies up to 30 dB are reported for ships' broadband source levels belonging to the same vessel class and operating under similar conditions. We present a statistical meta-analysis of individual ships' broadband source levels available in the literature so far to identify which factors likely explain these discrepancies. Methods: We collated ships' source levels from the published literature to construct our dataset. A Generalized Linear Mixed Model was applied to the dataset to statistically assess the contribution of intrinsic (i.e., related to ships' static and dynamic attributes) and extrinsic factors (i.e., related to both the protocol for hydroacoustic data acquisition and the noise data reduction procedure) to the reported broadband source levels. Results: Amongst intrinsic factors, ships' speed-over-ground 15.39 dB × log 10 v 1 knot , p-value < 0.001 , ships' width 12.03 dB × log 10 b 1 m ; p-value < 0.001 , and ships' class (−6.07 to 2.08 dB; p-value ∈ [< 0.001 to 0.036]) have shown the strongest correlations with broadband source levels. The hydrophone-to-source closest point of approach-4.83 dB × CPA 1 nmi ; p-value < 0.001 and the correction for surface-image reflections (21.73 dB; p-value = 0.002) contribute the most to explain the reported ships' broadband source levels' variability amongst extrinsic factors. Conclusions: Our meta-analysis confirms a consensus that speed regulation can effectively reduce instantaneous ships' source levels. Neglecting Lloyd's mirror effects through the abuse of non-corrected spreading laws for propagation loss directly leads to a generalized underestimation of the ships' source levels retrieved from the literature. This could eventually be addressed by a wider adoption of standardized methods of hydrophone-based sound recordings and of data processing to homogenize results and facilitate their interpretation to conduct environmental impact assessment.
Exposure to anthropogenic noise from the commercial fleet is one of the primary constituents of the acoustic pollution perturbing the environment of aquatic life. Merchant ships (e.g. bulkers, tankers) have been the focus of numerous studies for underwater noise source level determination and modeling. This work extends pre-existing studies to the ferry ship class. Hydrophone-based measurements of the N.M. Trans-Saint-Laurent ferry near the Rivière-du-Loup harbor (Rivière-du-Loup, QC CANADA) were obtained for 186 transits between 2020 July 22th and 2020 September 5th. For each transit, monopole source levels are estimated for two (2) different modes of operation i.e., the low-speed phases of acceleration/deceleration when the ferry launches/docks at Rivière-du-Loup and the passages at quasi-operational speed at the hydrophone’s closest-point-of-approach. Relative differences between the two (2) modes of operation are presented here in the low-frequency domain between 141 and 707 Hz. An average excess of 8 to 11.5 dB indicates that the ferry is likely one order of magnitude noisier, within this frequency band, during acceleration/deceleration when compared to passages at operational speed. This highlights that, in terms of marine mammal conservation, a significant reduction of the noise pollution could be achieved, for instance, by avoiding sudden speed changes in the vicinity of whales.
Anthropogenic noise from navigation is a major contributor to the disturbance of the acoustic soundscape in underwater environments containing noise-sensitive life forms. While previous studies mostly developed protocols for the empirical determination of noise source levels associated with the world’s commercial fleet, this work explores the radiated noise emitted by small recreational vessels that thrive in many coastal waters, such as in the St. Lawrence Estuary beluga population’s summer habitat. Hydrophone-based measurements in the Saguenay River (QC, Canada) were carried out during the summers of 2021 and 2022. Shore-based observations identified 45 isolated transits of small, motorized vessels and were able to track their displacement during their passage near the hydrophone. Received noise levels at the hydrophone typically fell below the hearing audiogram of the endangered St. Lawrence Estuary beluga. Monopole source levels at low frequencies (0.1–≲2 kHz) held on average twice the acoustic power compared to their mid-frequency (≳2–30 kHz) counterparts. The speed over ground of recreational vessel showed a positive correlation with the back-propagated monopole source levels. Estimations of the mid-frequency noise levels based on low-frequency measurements should be used moderately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.