Abstract-We present a method to automatically detect shadows in a fast and accurate manner by taking advantage of the inherent sensitivity of digital camera sensors to the near-infrared (NIR) part of the spectrum. Dark objects, which confound many shadow detection algorithms, often have much higher reflectance in the NIR. We can thus build an accurate shadow candidate map based on image pixels that are dark both in the visible and NIR representations. We further refine the shadow map by incorporating ratios of the visible to the NIR image, based on the observation that commonly encountered light sources have very distinct spectra in the NIR band. The results are validated on a new database, which contains visible/NIR images for a large variety of real-world shadow creating illuminant conditions, as well as manually labelled shadow ground truth. Both quantitative and qualitative evaluations show that our method outperforms current state-of-the-art shadow detection algorithms in terms of accuracy and computational efficiency.
Existing video coders anchor motion fields at frames that are to be predicted. In this paper, we demonstrate how changing the anchoring of motion fields to reference frames has some important advantages over conventional anchoring. We work with piecewise-smooth motion fields, and use breakpoints to signal discontinuities at moving object boundaries. We show how discontinuity information can be used to resolve double mappings arising when motion is warped from reference to target frames. We present an analytical model that allows to determine weights for texture, motion, and breakpoints to guide the rate-allocation for scalable encoding. Compared with the conventional way of anchoring motion fields, the proposed scheme requires fewer bits for the coding of motion; furthermore, the reconstructed video frames contain fewer ghosting artefacts. The experimental results show the superior performance compared with the traditional anchoring, and demonstrate the high scalability attributes of the proposed method.
This paper presents a method leveraging coded motion information to obtain a fast, high quality motion field estimation. The method is inspired by a recent trend followed by a number of top-performing optical flow estimation schemes that first estimate a sparse set of features between two frames, and then use an edge-preserving interpolation scheme (EPIC) to obtain a piecewise-smooth motion field that respects moving object boundaries. In order to skip the time-consuming estimation of features, we propose to directly derive motion seeds from decoded HEVC block motion; we call the resulting scheme "HEVCEPIC". We propose motion seed weighting strategies that account for the fact that some motion seeds are less reliable than others. Experiments on a large variety of challenging sequences and various bit-rates show that HEVC-EPIC runs significantly faster than EPIC flow, while producing motion fields that have a slightly lower average endpoint error (A-EPE). HEVC-EPIC opens the door of seamlessly integrating HEVC motion into video analysis and enhancement tasks. When employed as input to a framerate upsampling scheme, the average Y-PSNR of the interpolated frames using HEVC-EPIC motion slightly outperforms EPIC flow across the tested bit-rates, while running an order of magnitude faster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.