Stretchable optoelectronic circuits, incorporating chip-level LEDs and photodiodes in a silicone membrane, are demonstrated. Due to its highly miniaturized design and tissue-like mechanical properties, such an optical circuit can be conformally applied to the epidermis and be used for measurement of photoplethysmograms. This level of optical functionality in a stretchable substrate is potentially of great interest for personal health monitoring.
Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement.
Fluorescence techniques dominate the field of live-cell microscopy, but bleaching and motion blur from too long integration times limit dynamic investigations of small objects. High contrast, label-free life-cell imaging of thousands of acquisitions at 160 nm resolution and 100 Hz is possible by Rotating Coherent Scattering (ROCS) microscopy, where intensity speckle patterns from all azimuthal illumination directions are added up within 10 ms. In combination with fluorescence, we demonstrate the performance of improved Total Internal Reflection (TIR)-ROCS with variable illumination including timescale decomposition and activity mapping at five different examples: millisecond reorganization of macrophage actin cortex structures, fast degranulation and pore opening in mast cells, nanotube dynamics between cardiomyocytes and fibroblasts, thermal noise driven binding behavior of virus-sized particles at cells, and, bacterial lectin dynamics at the cortex of lung cells. Using analysis methods we present here, we decipher how motion blur hides cellular structures and how slow structure motions cover decisive fast motions.
An implantable sensor system for long-term monitoring of blood pressure is realized by taking advantage of the correlation between pulse transit time and blood pressure. The highly integrated implantable sensor module, fabricated using MEMS technologies, uses 8 light emitting diodes (LEDs) and a photodetector on chip level. The sensor is applied to large blood vessels, such as the carotid or femoral arteries, and allows extravascular measurement of highly-resolved photoplethysmograms. In addition, spectrophotometric approaches allow measurement of hemoglobin derivatives. For the calibration of blood pressure measurements, the sensor system has been successfully implemented in animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.