Yellow skin is an abundant phenotype among domestic chickens and is caused by a recessive allele (W*Y) that allows deposition of yellow carotenoids in the skin. Here we show that yellow skin is caused by one or more cis-acting and tissuespecific regulatory mutation(s) that inhibit expression of BCDO2 (beta-carotene dioxygenase 2) in skin. Our data imply that carotenoids are taken up from the circulation in both genotypes but are degraded by BCDO2 in skin from animals carrying the white skin allele (W*W). Surprisingly, our results demonstrate that yellow skin does not originate from the red junglefowl (Gallus gallus), the presumed sole wild ancestor of the domestic chicken, but most likely from the closely related grey junglefowl (Gallus sonneratii). This is the first conclusive evidence for a hybrid origin of the domestic chicken, and it has important implications for our views of the domestication process.
The
high theoretical gravimetric capacity of the Li–S battery
system makes it an attractive candidate for numerous energy storage
applications. In practice, cell performance is plagued by low practical
capacity and poor cycling. In an effort to explore the mechanism of
the discharge with the goal of better understanding performance, we
examine the Li–S phase diagram using computational techniques
and complement this with an in situ 7Li NMR study of the
cell during discharge. Both the computational and experimental studies
are consistent with the suggestion that the only solid product formed
in the cell is Li2S, formed soon after cell discharge is
initiated. In situ NMR spectroscopy also allows the direct observation
of soluble Li+-species during cell discharge; species that
are known to be highly detrimental to capacity retention. We suggest
that during the first discharge plateau, S is reduced to soluble polysulfide
species concurrently with the formation of a solid component (Li2S) which forms near the beginning of the first plateau, in
the cell configuration studied here. The NMR data suggest that the
second plateau is defined by the reduction of the residual soluble
species to solid product (Li2S). A ternary diagram is presented
to rationalize the phases observed with NMR during the discharge pathway
and provide thermodynamic underpinnings for the shape of the discharge
profile as a function of cell composition.
Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid–electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.