Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition.
Na 2 S was prepared from stoichiometric Na (Acros Organics, rod, 99.8%, mechanically cleaned prior to use) and S (see main text) in separate alumina crucibles (Almath) in an evacuated silica ampoule. The reactants were heated at 1°C min −1 to 300°C for 48 h and cooled ambiently to room temperature. The ground product was a fine powder of a slightly tan-color. The product was determined to be phase pure by XRD.
The
high theoretical gravimetric capacity of the Li–S battery
system makes it an attractive candidate for numerous energy storage
applications. In practice, cell performance is plagued by low practical
capacity and poor cycling. In an effort to explore the mechanism of
the discharge with the goal of better understanding performance, we
examine the Li–S phase diagram using computational techniques
and complement this with an in situ 7Li NMR study of the
cell during discharge. Both the computational and experimental studies
are consistent with the suggestion that the only solid product formed
in the cell is Li2S, formed soon after cell discharge is
initiated. In situ NMR spectroscopy also allows the direct observation
of soluble Li+-species during cell discharge; species that
are known to be highly detrimental to capacity retention. We suggest
that during the first discharge plateau, S is reduced to soluble polysulfide
species concurrently with the formation of a solid component (Li2S) which forms near the beginning of the first plateau, in
the cell configuration studied here. The NMR data suggest that the
second plateau is defined by the reduction of the residual soluble
species to solid product (Li2S). A ternary diagram is presented
to rationalize the phases observed with NMR during the discharge pathway
and provide thermodynamic underpinnings for the shape of the discharge
profile as a function of cell composition.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
A Polyaniline-Supercapacitor with quinone electrolytes remains stable over 50 000 galvanostatic charge-discharge cycles. The quinones provide superior stability by preventing the conversion of porous polyaniline to a highly reactive state. Our work shows that highly stable polymer-supercapacitors can be engineered by combining electrochemically active polymers and redox-active electrolytes with concerted electrochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.