The absence of a phase transformation involving substantial structural rearrangements and large volume changes is generally considered to be a key characteristic underpinning the high-rate capability of any battery electrode material. In apparent contradiction, nanoparticulate LiFePO4, a commercially important cathode material, displays exceptionally high rates, whereas its lithium-composition phase diagram indicates that it should react via a kinetically limited, two-phase nucleation and growth process. Knowledge concerning the equilibrium phases is therefore insufficient, and direct investigation of the dynamic process is required. Using time-resolved in situ x-ray powder diffraction, we reveal the existence of a continuous metastable solid solution phase during rapid lithium extraction and insertion. This nonequilibrium facile phase transformation route provides a mechanism for realizing high-rate capability of electrode materials that operate via two-phase reactions.
Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including 'defective by design' crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.
Metal fluorides/oxides (MF(x)/M(x)O(y)) are promising electrodes for lithium-ion batteries that operate through conversion reactions. These reactions are associated with much higher energy densities than intercalation reactions. The fluorides/oxides also exhibit additional reversible capacity beyond their theoretical capacity through mechanisms that are still poorly understood, in part owing to the difficulty in characterizing structure at the nanoscale, particularly at buried interfaces. This study employs high-resolution multinuclear/multidimensional solid-state NMR techniques, with in situ synchrotron-based techniques, to study the prototype conversion material RuO2. The experiments, together with theoretical calculations, show that a major contribution to the extra capacity in this system is due to the generation of LiOH and its subsequent reversible reaction with Li to form Li2O and LiH. The research demonstrates a protocol for studying the structure and spatial proximities of nanostructures formed in this system, including the amorphous solid electrolyte interphase that grows on battery electrodes.
A new class of selenium and selenium-sulfur (Se(x)S(y))-based cathode materials for room temperature lithium and sodium batteries is reported. The structural mechanisms for Li/Na insertion in these electrodes were investigated using pair distribution function (PDF) analysis. Not only does the Se electrode show promising electrochemical performance with both Li and Na anodes, but the additional potential for mixed Se(x)S(y) systems allows for tunable electrodes, combining the high capacities of S-rich systems with the high electrical conductivity of the d-electron containing Se. Unlike the widely studied Li/S system, both Se and Se(x)S(y) can be cycled to high voltages (up to 4.6 V) without failure. Their high densities and voltage output offer greater volumetric energy densities than S-based batteries, opening possibilities for new energy storage systems that can enable electric vehicles and smart grids.
Here we present detailed structural evidence of captured molecular iodine (I(2)), a volatile gaseous fission product, within the metal-organic framework ZIF-8 [zeolitic imidazolate framework-8 or Zn(2-methylimidazolate)(2)]. There is worldwide interest in the effective capture and storage of radioiodine, as it is both produced from nuclear fuel reprocessing and also commonly released in nuclear reactor accidents. Insights from multiple complementary experimental and computational probes were combined to locate I(2) molecules crystallographically inside the sodalite cages of ZIF-8 and to understand the capture of I(2) via bonding with the framework. These structural tools included high-resolution synchrotron powder X-ray diffraction, pair distribution function analysis, and molecular modeling simulations. Additional tests indicated that extruded ZIF-8 pellets perform on par with ZIF-8 powder and are industrially suitable for I(2) capture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.