The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors.
Background: One of the main challenges in developing phage therapy and manufacturing phage products is the reliable evaluation of their efficacy, performance, and quality. Since phage virulence is intrinsically difficult to fully capture, researchers have turned to rapid but partially inadequate methods for its evaluation. Materials and Methods: This study demonstrates a standardized quantitative method to assess phage virulence based on three parameters: the virulence index (V P )-quantifying the virulence of a phage against a host, the local virulence (v i )-assessing killing potential at given multiplicities of infection (MOIs), and MV 50 -the MOI at which the phage achieves 50% of its maximum theoretical virulence. This was shown through comparative analysis of the virulence of phages T4, T5, and T7. Results: Under the conditions tested, phage T7 displayed the highest virulence, followed by phage T4 and, finally, by phage T5. The impact of parameters such as temperature and medium composition on virulence was shown for each phage. The use of the method to evaluate the virulence of combinations of phages-for example, for cocktail formulation-is also shown with phages T5 and T7. Conclusions: The method presented provides a platform for high-throughput quantitative assessment of phage virulence and quality control of phage products. It can also be applied to phage screening, evaluation of phage strains, phage mutants, infection conditions and/or the susceptibility of host strains, and the formulation of phage cocktails.
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.
Delivering active phage requires a prudent choice of inhalation device. The jet nebulizer was not a good choice for aerosolizing phage D29 under the tested conditions, due to substantial titer reduction likely occurring during droplet production. The vibrating mesh nebulizer is recommended for animal inhalation studies requiring large amounts of D29 aerosol, whereas the soft mist inhaler may be useful for self-administration of D29 aerosol.
The order Methylococcales constitutes the methanotrophs – bacteria that can metabolize methane, a potent greenhouse gas, as their sole source of energy. These bacteria are significant players in the global carbon cycle and can produce value-added products from methane, such as biopolymers, biofuels, and single-cell proteins for animal feed, among others. Previous studies using single-gene phylogenies have shown inconsistencies in the currently established taxonomic structure of this group. This study aimed to determine and resolve these issues by using whole-genome sequence analyses. Phylogenomic analysis and the use of similarity indexes for genomic comparisons – average amino acid identity, digital DNA–DNA hybridization (dDDH), and average nucleotide identity (ANI) – were performed on 91 Methylococcales genomes. Results suggest the reclassification of members at the genus and species levels. Firstly, to resolve polyphyly of the genus Methylomicrobium, Methylomicrobium alcaliphilum, “Methylomicrobium buryatense,” Methylomicrobium japanense, Methylomicrobium kenyense, and Methylomicrobium pelagicum are reclassified to a newly proposed genus, Methylotuvimicrobium gen. nov.; they are therefore renamed to Methylotuvimicrobium alcaliphilum comb. nov., “Methylotuvimicrobium buryatense” comb. nov., Methylotuvimicrobium japanense comb. nov., Methylotuvimicrobium kenyense comb. nov., and Methylotuvimicrobium pelagicum comb. nov., respectively. Secondly, due to the phylogenetic affinity and phenotypic similarities of Methylosarcina lacus with Methylomicrobium agile and Methylomicrobium album, the reclassification of the former species to Methylomicrobium lacus comb. nov. is proposed. Thirdly, using established same-species delineation thresholds (70% dDDH and 95% ANI), Methylobacter whittenburyi is proposed to be a later heterotypic synonym of Methylobacter marinus (89% dDDH and 99% ANI). Also, the effectively but not validly published “Methylomonas denitrificans” was identified as Methylomonas methanica (92% dDDH and 100% ANI), indicating that the former is a later heterotypic synonym of the latter. Lastly, strains MC09, R-45363, and R-45371, currently identified as M. methanica, each represent a putative novel species of the genus Methylomonas (21–35% dDDH and 74–88% ANI against M. methanica) and were reclassified as Methylomonas sp. strains. It is imperative to resolve taxonomic inconsistencies within this group, first and foremost, to avoid confusion with ecological and evolutionary interpretations in subsequent studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.