A T-to-C transition at nucleotide (nt) 9176 in the mitochondrial adenosine triphosphatase 6 (ATPase 6) gene was detected in 2 brothers with a neurological disorder resembling Leigh syndrome. The mutation was also present in the 2 other siblings and in the mother, who were asymptomatic. In the more severely affected boy (the proband), the mutation was homoplasmic in muscle, leucocytes, and fibroblasts. In leucocytes from his affected brother, 98% of mtDNA was mutant. Heteroplasmy of varying degrees was seen in leucocytes from the mother and the 2 unaffected siblings. The mutation changes a highly conserved leucine residue near the carboxyl terminus of the mitochondrial ATPase 6 subunit to proline. It could not be detected in 168 control subjects. Studies of ATP synthesis and hydrolysis in fibroblasts from the proband were normal.
Respiratory chain complex I deficiency is a common cause of Leigh's disease (LD) and can be caused by mutations in genes encoded by either nuclear or mitochondrial DNA (mtDNA). Most pathogenic mtDNA mutations act recessively and only cause disease when present at high mutant loads (typically >90%) in tissues such as muscle and brain. Two mitochondrial DNA mutations in complex I subunit genes, G14459A in ND6, and T12706C in ND5, have been associated with complex I deficiency and LD. We report another ND5 mutation, G13513A, in three unrelated patients with complex I deficiency and LD. The G13513A mutation was present at mutant loads of approximately 50% or less in all tissues tested, including multiple brain regions. The threshold mutant load for causing a complex I defect in cultured cells was approximately 30%. Blue Native polyacrylamide gel electrophoresis showed that fibroblasts with 45% G13513A mutant load had approximately 50% of the normal amount of fully assembled complex I. Fibroblasts with greater than 97% of the ND6 G14459A mutation had only 20% fully assembled complex I, suggesting that both mutations disrupt complex I assembly or turnover. We conclude that the G13513A mutation causes a complex I defect when present at unusually low mutant load and may act dominantly.
Multiple Symmetrical Lipomatosis (MSL) is an unusual disorder characterized by the development of axial lipomas in adulthood. The pathoetiology of lipoma tissue in MSL remains unresolved. Seven patients with MSL were followed for a mean period of 12 years (8-20 years). All patients had cervical lipomas ranging from subtle lesions to disfiguring masses; six patients had peripheral neuropathy and five had proximal myopathy. Myoclonus, cerebellar ataxia and additional lipomas were variably present. All patients showed clinical progression. Muscle histopathology was consistent with mitochondrial disease. Five patients were positive for mtDNA point mutation m.8344A>G, three of whom underwent lipoma resection--all samples were positive for uncoupling protein-1 mRNA (unique to brown fat). Lipoma from one case stained positive for adipocyte fatty-acid protein-2 (unique to brown fat and immature adipocytes). This long-term study hallmarks the phenotypic heterogeneity of MSL's associated clinical features. The clinical, genetic and molecular findings substantiate the hypothesis that lipomas in MSL are due to a mitochondrial disorder of brown fat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.