Despite great potential, delivery remains as the most significant barrier to the widespread use of siRNA therapeutics. siRNA has delivery limitations due to susceptibility to RNase degradation, low cellular uptake, and poor tissue-specific localization. Here, we report the development of a hybrid nanoparticle (NP)/hydrogel system that overcomes these challenges. Hydrogels provide localized and sustained delivery via controlled release of entrapped siRNA/NP complexes while NPs protect and enable efficient cytosolic accumulation of siRNA. To demonstrate therapeutic efficacy, regenerative siRNA against WW domain-containing E3 ubiquitin protein ligase 1 (Wwp1) complexed with NP were entrapped within poly(ethylene glycol) (PEG)-based hydrogels and implanted at sites of murine mid-diaphyseal femur fractures. Results showed localization of hydrogels and controlled release of siRNA/NPs at fractures for 28 days, a timeframe over which fracture healing occurs. siRNA/NP sustained delivery from hydrogels resulted in significant Wwp1 silencing at fracture callus compared to untreated controls. Fractures treated with siRNA/NP hydrogels exhibited accelerated bone formation and significantly increased biomechanical strength. This NP/hydrogel siRNA delivery system has outstanding therapeutic promise to augment fracture healing. Owing to the structural similarities of siRNA, the development of the hydrogel platform for in vivo siRNA delivery has myriad therapeutic possibilities in orthopaedics and beyond.
G-quadruplex (GQ) is a noncanonical nucleic acid structure that is formed by guanine rich sequences. Unless it is destabilized by proteins such as replication protein A (RPA), GQ could interfere with DNA metabolic functions, such as replication or repair. We studied RPA-mediated GQ unfolding using single-molecule FRET on two groups of GQ structures that have different loop lengths and different numbers of G-tetrad layers. We observed a linear increase in the steady-state stability of the GQ against RPA-mediated unfolding with increasing number of layers or decreasing loop length. The stability demonstrated by different GQ structures varied by at least three orders of magnitude. Those with shorter loops (less than three nucleotides long) or a greater number of layers (more than three layers) maintained a significant folded population even at physiological RPA concentration (≈1 μM), raising the possibility of physiological viability of such GQ structures. Finally, we measured the transition time between the start and end of the RPA-mediated GQ unfolding process to be 0.35 ± 0.10 s for all GQ constructs we studied, despite significant differences in their steady-state stabilities. We propose a two-step RPA-mediated GQ unfolding mechanism that is consistent with our observations.
Injuries to flexor tendons can be complicated by fibrotic adhesions, which severely impair the function of the hand. Adhesions have been associated with TGF-β1, which causes upregulation of PAI-1, a master suppressor of protease activity, including matrix metalloproteinases (MMP). In the present study, the effects of inhibiting PAI-1 in murine zone II flexor tendon injury were evaluated utilizing knockout (KO) mice and local nanoparticle-mediated siRNA delivery. In the PAI-1 KO murine model, reduced adherence of injured tendon to surrounding subcutaneous tissue and accelerated recovery of normal biomechanical properties compared to wild type controls were observed. Furthermore, MMP activity was significantly increased in the injured tendons of the PAI-1 KO mice, which could explain their reduced adhesions and accelerated remodeling. These data demonstrate that PAI-1 mediates fibrotic adhesions in injured flexor tendons by suppressing MMP activity. In vitro siRNA delivery to silence Serpine1 expression after treatment with TGF-β1 increased MMP activity. Nanoparticle-mediated delivery of siRNA targeting Serpine1 in injured flexor tendons significantly reduced target gene expression and subsequently increased MMP activity. Collectively, the data demonstrate that PAI-1 can be a druggable target for treating adhesions and accelerating the remodeling of flexor tendon injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.