In this review, we describe four approaches to the materials synthesis of organized inorganic matter. These include the use of self-assembled organic templates (transcriptive synthesis), cooperative assemblies of templates and building blocks (synergistic synthesis), spatially restricted reaction fields (morphosynthesis), and combinations of these approaches (integrative synthesis) in the area of sol-gel chemistry. We illustrate these strategies, respectively, by describing recent work on the formation of silica-based organized materials, viz. the preparation of ordered silica macrostructures using bacterial templates, templatedirected synthesis of ordered hybrid mesophases and organoclays, synthesis of microskeletal frameworks of silica and other metal oxides in compartmentalized liquids, and use of bacterial superstructures in the fabrication of hierarchical macrostructures of mesoscopically ordered silica.
Silver or gold-containing porous frameworks have been used extensively in catalysis, electrochemistry, heat dissipation and biofiltration. These materials are often prepared by thermal reduction of metal-ion-impregnated porous insoluble supports (such as alumina and pumice), and have surface areas of about 1 m(2) g(-1), which is typically higher than that obtained for pure metal powders or foils prepared electrolytically or by infiltration and thermal decomposition of insoluble cellulose supports. Starch gels have been used in association with zeolite nanoparticles to produce porous inorganic materials with structural hierarchy, but the use of soft sacrificial templates in the synthesis of metallic sponges has not been investigated. Here we demonstrate that self-supporting macroporous frameworks of silver, gold and copper oxide, as well as composites of silver/copper oxide or silver/titania can be routinely prepared by heating metal-salt-containing pastes of the polysaccharide, dextran, to temperatures between 500 and 900 degrees C. Magnetic sponges were similarly prepared by replacing the metal salt precursor with preformed iron oxide (magnetite) nanoparticles. The use of dextran as a sacrificial template for the fabrication of metallic and metal oxide sponges should have significant benefits over existing technologies because the method is facile, inexpensive, environmentally benign, and amenable to scale-up and processing.
This Full Paper investigates the adsorption and desorption of the anticancer drugs cis‐diamminedichloroplatinum(II) (CDDP, cisplatin) and the new platinum(II) complex di(ethylenediamineplatinum)medronate (DPM), as well as the clinically relevant bisphosphonate alendronate, towards two biomimetic synthetic HA nanocrystalline materials with either plate‐shaped (HAps) or needle‐shaped (HAns) morphologies and different chemico‐physical properties. The adsorption and desorption kinetics are dependent on the specific properties of the drugs and the morphology of the HA nanoparticles. Adsorption of the platinum complexes occurs with retention of the nitrogen ligands but the chloride ligands of cisplatin are displaced. Despite their opposite charges, the negatively charged alendronate bisphosphonate and the positively charged aquated cisplatin are strongly adsorbed, while the neutral DPM complex shows lower affinity towards the negatively charged apatitic surface. The data suggest that adsorption of the two platinum complexes is driven by electrostatic attractions, while interaction between the alendronate and the HA surface takes place by ligand exchange in which the two phosphonate groups of the drug molecule replace two surface phosphate groups. Significantly, adsorption of positively charged hydrolysis species of cisplatin is more favored on the phosphate‐rich HAns surface while adsorption of negatively charged alendronate is more favored on the calcium‐rich HAps surface. The latter type of short‐range electrostatic interactions also appear to dominate the desorption kinetics; consequently, drug release is greater for neutral DPM than for charged alendronate and aquated cisplatin. Moreover, while the release per unit area of charged species is the same for the two types of HAs, the release of DPM is faster from HAns, which is lower in surface calcium, than for HAps. Overall, this work demonstrates that the properties of HA nanocrystals can be modulated in such a way to produce HA/biomolecule conjugates tailored for specific therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.