In the context of the coronavirus disease 2019 (COVID-19) pandemic there has been an increase of the use of antigen-detection rapid diagnostic tests (Ag-RDT). The performance of Ag-RDT vary greatly between manufacturers and evaluating their analytical limit of detection (LOD) has become high priority. Here we describe a manufacturer-independent evaluation of the LOD of 19 marketed Ag-RDT using live SARS-CoV-2 spiked in different matrices: direct culture supernatant, a dry swab, and a swab in Amies. Additionally, the LOD using dry swab was investigated after 7 days’ storage at − 80 °C of the SARS-CoV-2 serial dilutions. An LOD of ≈ 5.0 × 102 pfu/ml (1.0 × 106 genome copies/ml) in culture media is defined as acceptable by the World Health Organization. Fourteen of 19 Ag-RDTs (ActiveXpress, Espline, Excalibur, Innova, Joysbio, Mologic, NowCheck, Orient, PanBio, RespiStrip, Roche, Standard-F, Standard-Q and Sure-Status) exceeded this performance criteria using direct culture supernatant applied to the Ag-RDT. Six Ag-RDT were not compatible with Amies media and a decreased sensitivity of 2 to 20-fold was observed for eleven tests on the stored dilutions at − 80 °C for 7 days. Here, we provide analytical sensitivity data to guide appropriate test and sample type selection for use and for future Ag-RDT evaluations.
Introduction. The importance of human saliva in aerosol-based transmission of SARS-CoV-2 is now widely recognized. However, little is known about the efficacy of virucidal mouthwash formulations against emergent SARS-CoV-2 variants of concern and in the presence of saliva. Hypothesis. Mouthwashes containing virucidal actives will have similar inactivation effects against multiple SARS-CoV-2 variants of concern and will retain efficacy in the presence of human saliva. Aim. To examine in vitro efficacy of mouthwash formulations to inactivate SARS-CoV-2 variants. Methodology. Inactivation of SARS-CoV-2 variants by mouthwash formulations in the presence or absence of human saliva was assayed using ASTM International Standard E1052-20 methodology. Results. Appropriately formulated mouthwashes containing 0.07 % cetylpyridinium chloride but not 0.2 % chlorhexidine completely inactivated SARS-CoV-2 (USA-WA1/2020, Alpha, Beta, Gamma, Delta) up to the limit of detection in suspension assays. Tests using USA-WA1/2020 indicates that efficacy is maintained in the presence of human saliva. Conclusions. Together these data suggest cetylpyridinium chloride-based mouthwashes are effective at inactivating SARS-CoV-2 variants. This indicates potential to reduce viral load in the oral cavity and mitigate transmission via salivary aerosols.
In the context of the coronavirus disease 2019 (COVID-19) pandemic there has been an increase of the use of antigen-detection rapid diagnostic tests (Ag-RDT). The performance of Ag-RDT vary greatly between manufacturers and evaluating their analytical limit of detection (LOD) has become high priority. Here we describe a manufacturer-independent evaluation of the LOD of 19 marketed Ag-RDT using live SARS-CoV-2 spiked in different matrices: direct culture supernatant, a dry swab, and a swab in Amies. Additionally, the LOD using dry swab was investigated after 7-days storage at -80C of the SARS-CoV-2 serial dilutions. An LOD of ≈ 5.0 x 10^2 pfu/ml (1.0 x 10^6 genome copies/ml) in culture media is defined as acceptable by the World Health Organization. Fourteen of nineteen Ag-RDTs (ActiveXpress, Espline, Excalibur, Innova, Joysbio, Mologic, NowCheck, Orient, PanBio, RespiStrip, Roche, Standard-F, Standard-Q and Sure-Status) exceeded this performance criteria using direct culture supernatant applied to the Ag-RDT. Six Ag-RDT were not compatible with Amies media and a decreased sensitivity of 2 to 20-fold was observed for eleven tests on the stored dilutions at -80C for 7 days. Here, we provide analytical sensitivity data to guide appropriate test and sample type selection for use and for future Ag-RDT evaluations.
Lateral flow antigen tests can sensitively detect live cultured virus of the SARS-CoV-2 B1.
An LTR-based quantitative PCR (qPCR) assay was modified and optimized for the quantification of total HIV-1 nucleic acids in plasma and PBMC. TaqMan qPCR primers and probes were designed against the NCBI/LANL HIV-1 compendium database by analyzing sequences used in assays for sensitive cross-clade detection of HIV-1 as reported in the literature and elucidating regions of improved cross-subtype specificity. Inosine and mixed nucleotide bases were included at polymorphic sites. Real-time RT-qPCR and qPCR were performed on plasma viral RNA and cellular lysates. A step-up amplification approach to allow binding of primers across polymorphic regions showed improved sensitivity compared to universal cycling. Unlike a lead competing laboratory-developed assay, all major HIV-1 subtypes, and a wide range of recombinants from a 127-member diversity panel were detected and accurately quantified in spiked plasmas. Semi-nested PCR increased detection sensitivity even further. The assay was able to detect down to 88 copies/mL of HIV-1 in plasma with 95% efficiency or the equivalent of a single infected cell. The PCR assay will be valuable in studies that monitor very low viral levels including residual or break through HIV-1 in patients receiving antiretroviral therapy, in HIV-1 cure, and in other research studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.