DNA metabarcoding of freshwater communities typically relies on PCR amplification of a fragment of the mitochondrial cytochrome c oxidase I (COI) gene with degenerate primers. The advantage of COI is its taxonomic resolution and the availability of an extensive reference database. However, when universal primers are used on environmental DNA (eDNA) isolated from water, benthic invertebrate read and OTU numbers are typically “watered down,” that is, under represented, compared to whole specimen “bulk samples” due to greater co‐amplification of abundant nontarget taxa (e.g., fungi, algae, and bacteria). Because benthic stream invertebrate taxa are of prime importance for regulatory biomonitoring, more effective ways to capture their diversity via eDNA isolated from water are important. In this study, we aimed to improve benthic invertebrate assessment from eDNA by minimizing nontarget amplification. Therefore, we generated eDNA data using universal primers BF2/BR2 on samples collected throughout 15 months from a German Long‐Term Ecological Research site (Rhine‐Main‐Observatory, Kinzig River) to identify most abundant nontarget taxa. Based on these data, we designed a new reverse primer (EPTDr2n) with 3’‐specificity toward benthic invertebrate taxa and validated its specificity in silico together with universal forward primer fwhF2 using available data from GenBank and BOLD. We then performed in situ tests using 20 Kinzig River eDNA samples. We found that the percentage of target reads was much higher for the new primer combination compared to two universal benthic invertebrate primer pairs, BF2/BR2 and fwhF2/fwhR2n (99.6% versus 25.89% and 39.04%, respectively). Likewise, the number of detected benthic invertebrate species was substantially higher (305 versus 113 and 185) and exceeded the number of 153 species identified by expert taxonomists at nearby sites across two decades of sampling. While few taxa, such as flatworms, were not detected, we show that the optimized primer avoids the nontarget amplification bias and thus significantly improves benthic invertebrate detection from eDNA.
DNA metabarcoding workflows produce hundreds to ten-thousands of Operational Taxonomic Units (OTUs) or Exact Sequence Variants (ESVs) per analysis. In most workflows, a taxonomic assignment to these generated sequences is needed. This is typically done using publicly available databases. Especially, yet not exclusively, for Eumetazoan metabarcoding, the Barcode of Life Data system (BOLD) is the most comprehensive and curated reference barcode database and, therefore, typically the first choice for taxonomic assignment. While an application programme interface (API) exists to query data in large batches, no information on the many and important unpublished data are obtained through the API. The alternative approach using the BOLD identification engine on the website provides full access, yet it is restricted to 100 sequences at once. We developed a small platform-independent and graphical user interface (GUI) software package, BOLDigger, which aims to solve this problem by automating the process of sending successive requests of up to 100 sequences without surpassing the capacities of BOLD. BOLDigger can be used to download the results of the identification engine, as well as metadata for the obtained hits. For the selection of the best fitting hit, three different methods are implemented. A new approach, combining a threshold-based approach with the metadata information, was implemented to make use of the metadata.
Acknowledgments:We would like to thank Marlen Mährlein, Nathalie Kaffenberger, Cristina Hartmann-Fatu and Arne Beermann for help with sample collection or processing. Furthermore, we thank Jan-Niklas Macher for helpful discussions, Beatrice Kulawig for compiling the taxonomic data from the Rhine-Main-Observatory, and Martina Weiss for valuable comments on the structure of the manuscript. This work has been funded by a grant of the Bode Foundation to FL. This work has been conducted as part of COST (European Cooperation in Science and Technology) Action DNAqua-Net (CA15219). AbstractDNA metabarcoding of freshwater communities typically relies on PCR amplification of a fragment of the mitochondrial cytochrome c oxidase (COI) gene with degenerate primers. The advantage of COI is its taxonomic resolution and the availability of an extensive reference database.However, when universal primers are used on environmental DNA (eDNA) isolated from stream water, macroinvertebrate read and OTU numbers are typically "watered down", i.e. diluted, compared to whole specimen 'bulk samples' due to greater co-amplification of abundant nontarget taxa such as algae and bacteria. Because stream macroinvertebrate taxa are of prime importance for regulatory biomonitoring, more effective ways to capture their diversity via eDNA isolated from water are important. In this study, we aimed to improve macroinvertebrate assessment from eDNA by minimizing non-target amplification. Therefore, we generated data using universal primers BF2/BR2 throughout 15 months from a German Long-Term Ecological Research (LTER) site, the River Kinzig, to identify most abundant non-target taxa. Based on these data, we designed a new reverse primer (EPTDr2n) with 3'-specificity towards macrozoobenthic taxa and validated its specificity in silico together with universal forward primer fwhF2 using available data from GenBank and BOLD. We then performed in vitro tests using 20 eDNA samples taken in the Kinzig catchment. We found that the percentage of target reads was much higher for the new primer combination compared to two universal macrozoobenthic primer pairs, BF2/BR2 and fwhF2/fwhR2n (>99 % vs. 21.4 % and 41.25 %, respectively). Likewise, number of detected macroinvertebrate taxa was substantially higher (351 vs. 46 and 170, respectively) and exceeded the number of 257 taxa identified by expert taxonomists at nearby sites across two decades of sampling. While few taxa such as Turbellaria were not detected, we show that the optimized primer avoids the dilution problem and thus significantly improves macroinvertebrate detection for bioassessment and -monitoring.
Benthic invertebrates are the most commonly used organisms used to assess ecological status as required by the EU Water Framework Directive (WFD). For WFD-compliant assessments, benthic invertebrate communities are sampled, identified and counted. Taxa × abundance matrices are used to calculate indices and the resulting scores are compared to reference values to determine the ecological status class. DNA-based tools, such as DNA metabarcoding, provide a new and precise method for species identification but cannot deliver robust abundance data. To evaluate the applicability of DNA-based tools to ecological status assessment, we evaluated whether the results derived from presence/absence data are comparable to those derived from abundance data. We analysed benthic invertebrate community data obtained from 13,312 WFD assessments of German streams. Broken down to 30 official stream types, we compared assessment results based on abundance and presence/absence data for the assessment modules “organic pollution” (i.e., the saprobic index) and “general degradation” (a multimetric index) as well as their underlying metrics.In 76.6% of cases, the ecological status class did not change after transforming abundance data to presence/absence data. In 12% of cases, the status class was reduced by one (e.g., from good to moderate), and in 11.2% of cases, the class increased by one. In only 0.2% of cases, the status shifted by two classes. Systematic stream type-specific deviations were found and differences between abundance and presence/absence data were most prominent for stream types where abundance information contributed directly to one or several metrics of the general degradation module. For a single stream type, these deviations led to a systematic shift in status from ‘good’ to ‘moderate’ (n = 201; with only n = 3 increasing). The systematic decrease in scores was observed, even when considering simulated confidence intervals for abundance data. Our analysis suggests that presence/absence data can yield similar assessment results to those for abundance-based data, despite type-specific deviations. For most metrics, it should be possible to intercalibrate the two data types without substantial efforts. Thus, benthic invertebrate taxon lists generated by standardised DNA-based methods should be further considered as a complementary approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.