Silver nanowire networks are extensively studied due to their excellent optical and electrical properties and exceptional flexibility. These networks constitute a promising candidate for transparent and flexible electrode applications. However, they can degrade under electrical or thermal stresses, so the understanding of the degradation mechanism is crucial for the integration of these metallic nanostructures in devices. In the present work, the electrical resistance of about 200 silver nanowire networks was monitored in situ to study the failure mechanisms under constant electrical current and temperature to assess the prevailing stress in the failure process. For both origins of failure, electrical and thermal, the temperature-induced instabilities appear to be the prevailing phenomena at the origin of the network degradation. A semi-empirical physical model is proposed considering the generated Joule heating and the effect of the imposed temperature. This model allows calculation of the time of failure of silver nanowire networks for different electrical and thermal applied conditions and network densities, showing good agreement with experimental data. The proposed model provides a deeper insight and constitutes a quantitative prediction tool for stability assessment, thus contributing to propel the integration of nanowire networks into devices as transparent electrodes due to their robustness and reliability.
Stable InP (001) surfaces are characterized by fully occupied and empty surface states close to the bulk valence and conduction band edges, respectively. The present photoemission data show, however, a surface Fermi level pinning only slightly below the midgap energy which gives rise to an appreciable surface band bending. By means of density functional theory calculations, it is shown that this apparent discrepancy is due to surface defects that form at finite temperature. In particular, the desorption of hydrogen from metalorganic vapor phase epitaxy grown P-rich InP (001) surfaces exposes partially filled P dangling bonds that give rise to band gap states. These defects are investigated with respect to surface reactivity in contact with molecular water by lowtemperature water adsorption experiments using photoemission spectroscopy and are compared to our computational results. Interestingly, these hydrogen-related gap states are robust with respect to water adsorption, provided that water does not dissociate. Because significant water dissociation is expected to occur at steps rather than terraces, surface band bending of a flat InP (001) surface is not affected by water exposure.
The homogeneity of molecular Co-based water oxidation catalysts (WOCs) has been a subject of debate over the last 10 years as assumed various homogeneous Co-based WOCs were found to actually form CoO x under operating conditions. The homogeneity of the Co(H L ) (H L = N , N -bis(2,2′-bipyrid-6-yl)amine) system was investigated with cyclic voltammetry, electrochemical quartz crystal microbalance, and X-ray photoelectron spectroscopy. The obtained experimental results were compared with heterogeneous CoO x . Although it is shown that Co(H L ) interacts with the electrode during electrocatalysis, the formation of CoO x was not observed. Instead, a molecular deposit of Co(H L ) was found to be formed on the electrode surface. This study shows that deposition of catalytic material is not necessarily linked to the decomposition of homogeneous cobalt-based water oxidation catalysts.
Metal oxide‐based photoelectrodes for solar water splitting often utilize nanostructures to increase the solid‐liquid interface area. This reduces charge transport distances and increases the photocurrent for materials with short minority charge carrier diffusion lengths. While the merits of nanostructuring are well established, the effect of surface order on the photocurrent and carrier recombination has not yet received much attention in the literature. To evaluate the impact of pore ordering on the photoelectrochemical properties, mesoporous CuFe2O4 (CFO) thin film photoanodes were prepared by dip‐coating and soft‐templating. Here, the pore order and geometry can be controlled by addition of copolymer surfactants poly(ethylene oxide)‐block‐poly(propylene oxide)‐block‐poly(ethylene oxide) (Pluronic® F‐127), polyisobutylene‐block‐poly(ethylene oxide) (PIB‐PEO) and poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) (Kraton liquid™‐PEO, KLE). The non‐ordered CFO showed the highest photocurrent density of 0.2 mA/cm2 at 1.3 V vs. RHE for sulfite oxidation, but the least photocurrent density for water oxidation. Conversely, the ordered CFO presented the best photoelectrochemical water oxidation performance. These differences can be understood on the basis of the high surface area, which promotes hole transfer to sulfite (a fast hole acceptor), but retards oxidation of water (a slow hole acceptor) due to electron‐hole recombination at the defective surface. This interpretation is confirmed by intensity‐modulated photocurrent (IMPS) and vibrating Kelvin probe surface photovoltage spectroscopy (VKP‐SPS). The lowest surface recombination rate was observed for the ordered KLE‐based mesoporous CFO, which retains spherical pore shapes at the surface resulting in fewer surface defects. Overall, this work shows that the photoelectrochemical energy conversion efficiency of copper ferrite thin films is not just controlled by the surface area, but also by surface order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.