Abstract:2 H NMR is used to ascertain dynamical behaviors of pure and mixed hydrogen-bonded liquids in bulk and in confinement. Detailed comparisons of previous and new results in broad dynamic and temperature ranges reveal that confinement effects differ for various liquids and confinements. For water, molecular reorientation strongly depends on the confinement size, with much slower and less fragile structural relaxation under more severe geometrical restriction. Moreover, a dynamical crossover occurs when a fraction of solid water forms so that the dynamics of the fraction of liquid water becomes even more restricted and, as a consequence, changes from bulk-like to interface-dominated. For glycerol, by contrast, confinement has weak effects on the reorientation dynamics. Mixed hydrogen-bonded liquids show even more complex dynamical behaviors. For aqueous solutions, the temperature dependence of the structural relaxation becomes discontinuous when the concentration changes due to a freezing of water fractions. This tendency for partial crystallization is enhanced rather than reduced by confinement, because different liquid-matrix interactions of the molecular species induce micro-phase segregation, which facilitates ice formation in water-rich regions. In addition, dynamical couplings at solvent-protein interfaces are discussed. It is shown that, on the one hand, solvent dynamics are substantially slowed down at protein surfaces and, on the other hand, protein dynamics significantly depend on the composition and, thus, the viscosity of the solvent. Furthermore, a protein dynamical transition occurs when the amplitude of water-coupled restricted backbone dynamics vanishes upon cooling.
Performing quasielastic neutron scattering measurements and analyzing both elastic and quasielasic contributions, we study protein and water dynamics of hydrated elastin. At low temperatures, hydration-independent methyl group rotation dominates the findings. It is characterized by a Gaussian distribution of activation energies centered at about Em = 0.17 eV. At ∼195 K, coupled protein–water motion sets in. The hydration water shows diffusive motion, which is described by a Gaussian distribution of activation energies with Em = 0.57 eV. This Arrhenius behavior of water diffusion is consistent with previous results for water reorientation, but at variance with a fragile-to-strong crossover at ∼225 K. The hydration-related elastin backbone motion is localized and can be attributed to the cage rattling motion. We speculate that its onset at ∼195 K is related to a secondary glass transition, which occurs when a β relaxation of the protein has a correlation time of τβ ∼ 100 s. Moreover, we show that its temperature-dependent amplitude has a crossover at the regular glass transition Tg = 320 K of hydrated elastin, where the α relaxation of the protein obeys τα ∼ 100 s. By contrast, we do not observe a protein dynamical transition when water dynamics enters the experimental time window at ∼240 K.
Combining broadband dielectric spectroscopy and nuclear magnetic resonance studies, we analyze the reorientation dynamics and the translational diffusion associated with the glassy slowdown of the eutectic aqueous dimethyl sulfoxide solution in nano-sized confinements, explicitly, in silica pores with different diameters and in ficoll and lysozyme matrices at different concentrations. We observe that both rotational and diffusive dynamics are slower and more heterogeneous in the confinements than in the bulk but the degree of these effects depends on the properties of the confinement and differs for the components of the solution. For the hard and the soft matrices, the slowdown and the heterogeneity become more prominent when the size of the confinement is reduced. In addition, the dynamics are more retarded for dimethyl sulfoxide than for water, implying specific guest-host interactions. Moreover, we find that the temperature dependence of the reorientation dynamics and of the translational diffusion differs in severe confinements, indicating a breakdown of the Stokes–Einstein–Debye relation. It is discussed to what extent these confinement effects can be rationalized in the framework of core-shell models, which assume bulk-like and slowed-down motions in central and interfacial confinement regions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.