Long noncoding RNAs (lncRNAs) can act as tumour suppressor or oncogenes to contrast/promote tumour cell proliferation via RNA-dependent mechanisms. Recently, genome sequencing has identified elevated densities of tumour somatic single nucleotide variants (SNVs) in lncRNA genes. However, this has been attributed to phenotypically-neutral “passenger” processes, and the existence of positively-selected fitness-altering “driver” SNVs acting via lncRNAs has not been addressed. We developed and used ExInAtor2, an improved driver-discovery pipeline, to map pancancer and cancer-specific mutated lncRNAs across an extensive cohort of 2583 primary and 3527 metastatic tumours. The 54 resulting lncRNAs are mostly linked to cancer for the first time. Their significance is supported by a range of clinical and genomic evidence, and display oncogenic potential when experimentally expressed in matched tumour models. Our results revealed a striking SNV hotspot in the iconic NEAT1 oncogene, which was ascribed by previous studies to passenger processes. To directly evaluate the functional significance of NEAT1 SNVs, we used in cellulo mutagenesis to introduce tumour-like mutations in the gene and observed a consequent increase in cell proliferation in both transformed and normal backgrounds. Mechanistic analyses revealed that SNVs alter NEAT1 ribonucleoprotein assembly and boost subnuclear paraspeckles. This is the first experimental evidence that mutated lncRNAs can contribute to the pathological fitness of tumour cells.
Long noncoding RNAs (lncRNAs) are widely dysregulated in cancer, yet their functional roles in cellular disease hallmarks remain unclear. Here we employ pooled CRISPR deletion to perturb all 831 lncRNAs in KRAS-mutant non-small cell lung cancer (NSCLC), and measure their contribution to proliferation, chemoresistance and migration across two cell backgrounds. Integrative analysis of this data outperforms conventional 'dropout' screens in identifying cancer genes, while prioritising disease-relevant lncRNAs with pleiotropic and background-independent roles. Altogether 60 high-confidence oncogenic lncRNAs are active in NSCLC, the majority identified here for the first time, and which tend to be amplified and overexpressed in tumours. A follow-up antisense oligonucleotide (ASO) screen shortlisted two candidates, Cancer Hallmarks in Lung LncRNA (CHiLL 1&2), whose knockdown consistently suppressed cancer hallmarks in a variety of 2D and 3D tumour models. Molecular phenotyping reveals that CHiLL 1&2 control cellular-level phenotypes via distinct transcriptional networks converging on common oncogenic pathways. In summary, this work reveals a multi-dimensional functional lncRNA landscape underlying NSCLC that contains potential therapeutic vulnerabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.