We put forth a new framework for building pairing-based non-interactive zeroknowledge (NIZK) arguments for a wide class of algebraic languages, which are an extension of linear languages, containing disjunctions of linear languages and more. Our approach differs from the Groth-Sahai methodology, in that we rely on pairings to compile a Σ-protocol into a NIZK. Our framework enjoys a number of interesting features:conceptual simplicity, parameters derive from the Σ-protocol; proofs as short as resulting from the Fiat-Shamir heuristic applied to the underlying Σprotocol; fully adaptive soundness and perfect zero-knowledge in the common random string model with a single random group element as CRS; yields simple and efficient two-round, public coin, publicly-verifiable perfect witness-indistinguishable (WI) arguments(ZAPs) in the plain model. To our knowledge, this is the first construction of two-rounds statistical witness-indistinguishable arguments from pairing assumptions. Our proof system relies on a new (static, falsifiable) assumption over pairing groups which generalizes the standard kernel Diffie-Hellman assumption in a natural way and holds in the generic group model (GGM) and in the algebraic group model (AGM). Replacing Groth-Sahai NIZKs with our new proof system allows to improve several important cryptographic primitives. In particular, we obtain the shortest tightly-secure structurepreserving signature scheme (which are a core component in anonymous credentials), the shortest tightly-secure quasi-adaptive NIZK with unbounded simulation soundness (which in turns implies the shortest tightly-mCCA-secure cryptosystem), and shorter ring signatures.
The existence of one-way functions implies secure digital signatures, but not public-key encryption (at least in a black-box setting). Somewhat surprisingly, though, efficient public-key encryption schemes appear to be much easier to construct from concrete algebraic assumptions (such as the factoring of Diffie-Hellman-like assumptions) than efficient digital signature schemes. In this work, we provide one reason for this apparent difficulty to construct efficient signature schemes. Specifically, we prove that a wide range of algebraic signature schemes (in which verification essentially checks a number of linear equations over a group) fall to conceptually surprisingly simple linear algebra attacks. In fact, we prove that in an algebraic signature scheme, sufficiently many signatures can be linearly combined to a signature of a fresh message. We present attacks both in known-order and hidden-order groups (although in hidden-order settings, we have to restrict our definition of algebraic signatures a little). More explicitly, we show:the insecurity of all algebraic signature schemes in Maurer's generic group model (in pairing-free groups), as long as these schemes do not rely on other cryptographic assumptions, such as hash functions.the insecurity of a natural class of signatures in hidden-order groups, where verification consists of linear equations over group elements. We believe that this highlights the crucial role of public verifiability in digital signature schemes. Namely, while public-key encryption schemes do not require any publicly verifiable structure on ciphertexts, it is exactly this structure on signatures that invites attacks like ours and makes it hard to construct efficient signatures.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.