Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of β-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses1,2. Curiously, however, ‘inflammatory signature’ genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer3,4. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates5, referred to as ‘tumour elicited inflammation’6. Although infiltrating CD4+ TH1 cells and CD8+ cytotoxic T cells constitute a positive prognostic sign in colorectal cancer7,8, myeloid cells and T-helper interleukin (IL)-17-producing (TH17) cells promote tumorigenesis5,6, and a ‘TH17 expression signature’ in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival9. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier10. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.
Early biomarker-based prediction of imminent AKI followed by implementation of KDIGO care bundle reduced AKI severity, postoperative creatinine increase, length of ICU, and hospital stay in patients after major noncardiac surgery.
Background and aims Colitis-associated tumorigenesis is a balance between proliferation of tumour cells and tumour immunosurveillance. The role of T-helper-cellderived cytokines in tumour growth is not fully understood. In this study the authors investigated the influence of interleukin (IL) 21 on intestinal tumorigenesis. Methods Chronic colitis was induced in IL-21 À/À and littermate control wild-type mice with three cycles of 1.5% dextran sulphate sodium (DSS) over 7 days followed by 7 days of drinking water. Mice received an azoxymethane injection on day 0 of DSS-colitis to induce tumorigenesis. Immunohistochemistry was performed on inflamed and tumour-bearing areas of colons. Cytokine expression of isolated colonic CD4 T cells was determined by ELISA. Cytotoxic capacity of isolated colonic CD8 T cells targeting tumour cells was evaluated by flow cytometry and quantitative cytotoxicity assay. Apoptosis of tumour cells was determined by TUNEL assay of colonic sections. Results Increasing expression of IL-21 was observed in chronic colitis, which showed functional importance, since IL-21 deficiency prevented chronic DSS-colitis development. Further, in the absence of IL-21, significantly fewer tumour nodules were detected, despite a similar extent of intestinal inflammation. In wild-type mice, 8.661.9 tumour nodules were found compared with 1.061.2 in IL-21-deficient mice. In tumour-bearing IL-21-deficient mice, intestinal inflammation was restored and partly dependent on interferon (IFN)-g, whereas the inflammation in wild-type mice showed high IL-17A concentrations. In these rare tumours in IL-21-deficient mice, tumour cell proliferation (Ki-67) was decreased, while cell apoptosis was increased, compared with wild-type mice. Increased IFNg expression in tumour-bearing IL-21-deficient mice led to increased tumour immunosurveillance mediated by cytotoxic CD8CD103 T cells targeting E-cadherin + colonic tumour cells and therefore limited tumour growth. Conclusion These results indicate that IL-21 orchestrates colitis-associated tumorigenesis, leading to the hypothesis that high IFNg and low IL-17A expression reduces tumour cell proliferation and increases tumour immunosurveillance.
The pathogenesis of colitis-associated colorectal cancer is strongly influenced by immune cells, cytokines and other immune mediators present in the inflamed colon. Current research has emerged that T helper cell associated cytokines play a prominent role in tumor growth. In our recent manuscript we have revealed that the Th17 associated cytokine IL-21 prominently influences tumor development and immunosurveillance of colitis-associated colorectal cancer.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.