N-carbamoyl nitrones represent an important class of reagents for the synthesis of a variety of natural and biologically active compounds. These compounds are generally converted into valuable 4-isoxazolines upon cyclization reaction with dipolarophiles. However, these types of N-protected nitrones are highly unstable, which limits their synthesis, storage and practical use, enforcing alternative lengthy or elaborated synthetic routes. In this work, a 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)-mediated formal "dehydrogenation" of N-protected benzyl-, allyl- and alkyl-substituted hydroxylamines followed by in situ trapping of the generated unstable nitrones into N-carbamoyl 4-isoxazolines is presented. A plausible mechanism is also proposed, in which the dipolarophile shows an important assistant role in the generation of the active nitrone intermediate. This simple protocol avoids the problematic isolation of N-carbamoyl protected nitrones, providing new synthetic possibilities in isoxazoline chemistry.
The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc)2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero)-Diels–Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.
Unstable nitrones, formed from the hydroxylamine substrates in the presence of TEMPO, are trapped with alkynes or alkenes to produce the desired isoxazolidines as versatile building blocks of biologically active compounds or natural products (detailed mechanism).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.