Previous in vitro studies indicated that hepatic stellate cells (HSC) and rat liver myofibroblasts (rMF) have to be regarded as different cell populations of the myofibroblastic lineage with fibrogenic potential. Employing the discrimination features defined by these studies the localization of HSC and rMF was analyzed in diseased livers. Normal and acutely as well as chronically carbon tetrachloride-injured livers were analyzed by immunohistochemistry and by in situ hybridization. In normal livers HSC [desmin/glial fibrillary acid protein (GFAP)-positive cells] were distributed in the hepatic parenchyma, while rMF (desmin/smooth muscle alpha actin-positive, GFAP-negative cells colocalized with fibulin-2) were located in the portal field, the walls of central veins, and only occasionally in the parenchyma. Acute liver injury was characterized almost exclusively by an increase in the number of HSC, while the amount of rMF was nearly unchanged. In early stages of fibrosis, HSC and rMF were detected within the developing scars. In advanced stages of fibrosis, HSC were mainly present at the scar-parenchymal interface, while rMF accounted for the majority of the cells located within the scar. At every stage of fibrogenesis, rMF, in contrast to HSC, were only occasionally detected in the hepatic parenchyma. HSC and rMF are present in normal and diseased livers in distinct compartments and respond differentially to tissue injury. Acute liver injury is followed by an almost exclusive increase in the number of HSC, while in chronically injured livers not only HSC but also rMF are involved in scar formation.
Hepatic stellate cells (HSC), a pericyte-like nonparenchymal liver cell population, are regarded as the principal matrix-synthesizing cells of fibrotic liver. They might also play a role during liver inflammation. The present study analyzed (i) expression of cell adhesion molecules (CAMs) mediating cell infiltration, like intercellular adhesion molecule-1 (I-CAM-1) and vascular cell adhesion molecule-1 (V-CAM-1), by HSC, (ii) CAM regulation in HSC by growth factors and inflammatory cytokines, and (iii) CAM expression in situ during liver inflammation, using immunochemistry and Northern blot analysis. I-CAM-1 and V-CAM-1 expression was present in HSC in vitro and in cells located in the sinusoidal/perisinusoidal area of normal liver. Growth factors, eg, transforming growth factor-beta1, down-regulated I-CAM-1- and V-CAM-1-coding mRNAs and stimulated N-CAM expression of HSC. In contrast, inflammatory cytokines like tumor necrosis factor-alpha reduced N-CAM-coding mRNAs, whereas induction of I-CAM-1- and V-CAM-1-specific transcripts increased several fold. In situ, messengers specific for I-CAM-1 and V-CAM-1 were induced 3 hours after CCl4 treatment (thereby preceding mononuclear cell infiltration starting at 12 hours), were expressed at maximal levels 9-12 hours after CCl4 application, and decreased afterwards. I-CAM-1 and V-CAM-1 immunoreactivity increased in a linear fashion starting 3 hours after CCl4-induced liver injury, was detected in highest amounts at 24-48 hours characterized by maximal cell infiltration, and returned to baseline values at 96 hours. Interestingly, the induction/repression of CAM-specific messengers paralleled the time kinetics of tumor necrosis factor-alpha transforming growth factor-beta1 expression in injured liver. HSC might be important during the onset of hepatic tissue injury as proinflammatory elements and might interact with I-CAM-1 and V-CAM-1 ligand-bearing cells, namely lymphocyte function-associated antigen-1- or Mac-1/very late activation antigen-4-positive inflammatory cells, thereby modulating the recruitment and migration of mononuclear cells within the perisinusoidal space of diseased livers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.