Four different techniques were applied for the production of 233U alpha recoil ion sources, providing 229Th ions. They were compared with respect to a minimum energy spread of the 229Th recoil ions, using the emitted alpha particles as an indicator. The techniques of Molecular Plating, Drop-on-Demand inkjet printing, chelation from dilute nitric acid solution on chemically functionalized silicon surfaces, and self-adsorption on passivated titanium surfaces were used. All fabricated sources were characterized by using alpha spectrometry, radiographic imaging, and scanning electron microscopy. A direct validation for the estimated recoil ion rate was obtained by collecting 228Th recoil ions from 232U recoil ion sources prepared by self-adsorption and Molecular Plating. The chelation and the self-adsorption based approaches appear most promising for the preparation of recoil ion sources delivering monochromatic recoil ions.
A reaction pathway via oxidation of [ 18 F]fluorobenzaldehydes offers a very useful tool for the no-carrier-added radiosynthesis of [ 18 F]fluorophenols, a structural motive of several potential radiopharmaceuticals. A considerably improved chemoselectivity of the Baeyer-Villiger oxidation (BVO) towards phenols was achieved, employing 2,2,2-trifluoroethanol as reaction solvent in combination with Oxone or m-CPBA as oxidation agent. The studies showed the necessity of H 2 SO 4 addition, which appears to have a dual effect, acting as catalyst and desiccant. For example, 2-[ 18 F]fluorophenol was obtained with a RCY of 97% under optimised conditions of 80°C and 30-minute reaction time.The changed performance of the BVO, which is in agreement with known reaction mechanisms via Criegee intermediates, provided the best results with regard to radiochemical yield (RCY) and chemoselectivity, i.e. formation of [ 18 F]fluorophenols rather than [ 18 F]fluorobenzoic acids. Thus, after a long history of the BVO, the new modification now allows an almost specific formation of phenols, even from electron-deficient benzaldehydes. Further, the applicability of the tuned, chemoselective BVO to the n.c.a. level and to more complex compounds was demonstrated for the products n.c.a. 4-[ 18 F]fluorophenol (RCY 95%; relating to 4-[ 18 F]fluorobenzaldehyde) and 4-[ 18 F]fluoro-m-tyramine (RCY 32%; relating to [ 18 F]fluoride), respectively.
The development of a setup for a fast online characterization of radionuclide generators is reported. A generator utilizing the mother nuclide 227Ac sorbed on a cation exchange resin is continuously eluted by using a peristaltic pump. To allow continuous and pulse-free elution of a large volume over extended time periods a 3D-printed interface designed to remove pressure-oscillations induced by the pump was placed between pump and generator column to ensure undisturbed generator elution. The eluate of the generator is passed through a 3D printed flow cell placed inside a borehole Na(Tl)-scintillation detector for high counting efficiency. Alternatively, a HPGe detector suitable for nuclide identification was used to demonstrate the validity of the online method. The detection system combines conventional gamma-ray spectrometry with fast list mode data acquisition in the Matlab software package. Elution experiments were performed at different flow rates of hydrochloric acid, separating 211Bi (t
1/2 = 2.14 min) free from its parent nuclides. In addition, to prove the versatility of the setup, experiments at different hydrochloric acid concentrations were performed resulting in the elution of pure 211Pb (t
1/2 = 36.1 min) and 223Ra (t
1/2 = 11.43 d), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.