SignificanceAntiferromagnets can host strong quantum fluctuations in their ground state if they combine both low dimensionality and low spin. Materials based on copper oxides (spin-1/2 ions in layered or 1D structures) are unique in optimizing the tendency to strong quantum fluctuations. As a bonus, they show extremely large magnetic interactions, which lead to interesting quantum effects at relatively high temperatures as anomalous transport properties and high-Tc superconductivity in doped systems. Obtaining similar features with other ions has been a long-standing goal. We show that silver and fluorine (which are next to copper and oxygen in the periodic table) in the commercial compound normalAnormalgnormalF2 reach the goal, paving the way for a different generation of quantum materials.
A combined experimental-theoretical study of silver(I) and silver(II) fluorides under high pressure is reported. For Ag, the CsCl-type structure is stable to at least 39 GPa; the overtone of the IR-active mode is seen in the Raman spectrum. Its AgF sibling is a unique compound in many ways: it is more covalent than other known difluorides, crystallizes in a layered structure, and is enormously reactive. Using X-ray diffraction and guided by theoretical calculations (density functional theory), we have been able to elucidate crystal structures of high-pressure polymorphs of AgF. The transition from ambient pressure to an unprecedented nanotubular structure takes place via an intermediate orthorhombic layered structure, which lacks an inversion center. The observed phase transitions are discussed within the broader framework of the fluorite → cotunnite → NiIn series, which has been seen for other metal difluorides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.