The crystal structures of three ester derivatives of glycyrrhetinic acid (GE) are reported. X-ray crystallography revealed that despite differences in the size of the ester substituents (ethyl, isopropyl and 2-morpholinoethyl) the scheme of molecular self-assembly is similar in all three cases but differs significantly from that observed in other known GE esters. According to our analysis, the two basic patterns of self-assembly of GE esters observed in their unsolvated crystals correspond to two distinct orientations of the ester groups relative to the triterpene backbone. Moreover, comparison of the self-assembly modes of GE esters in their unsolvated forms with the supramolecular organization of GE and carbenoxolone in their solvated crystals revealed that ester substituents replace solvent molecules hydrogen bonded to the COOH group at the triterpene skeleton, resulting in similar packing arrangements of these compounds.
Introduction. Licorice or liquorice (Glycyrrhiza glabra, Leguminosae) is a perennial plant naturally occurring or cultivated in Europe and Asia. It was appreciated by many ancient cultures, and was employed within Arabic medicine and (beginning in the Middle Ages) in Europe folk medicine as a remedy for many diseases. Currently, the sweet flavoured root of this plant – Radix Glycyrrhizae (Liquirtiae), is widely taken for the treating of various upper respiratory tract diseases, as well as for gastric ulcer disease. It is also utilized as a sweetening and flavouring agent in the food, tobacco and pharmacy industries. The main active ingredient of liquorice is the triterpenoid saponin, glycyrrhizin, which is a mixture of calcium, magnesium and potassium salts of glycyrrhizic acid (GA). Glycyrrhizic acid is composed of an aglycone, that is 18β-glycyrrhetinic acid (GE), and a D-glucuronic acid dimer. The aim of this review is to discuss some aspects of the activity of glycyrrhetinic acid and its derivatives in infectious diseases.State of knowledge. The pentacyclic system of glycyrrhetinic acid consists of condensed six-membered rings with a hydroxyl group at C-3, a carboxyl moiety at C-30 and a ketone functional group at C-11. Considering the presence of the above mentioned functional groups, many structural transformations have been proposed, including those by way of esterification, alkylation and reduction reactions. The introduction of various chemical residues into its structure, as well as the modification of the glycyrrhetinic acid in its pentacyclic triterpene skeleton, has led to the generation of compounds with many valuable antimicrobial, anti-parasitic, antiviral properties and modified lipophilic parameters.Summary. In summary, glycyrrhetinic acid derivatives appear to have promise as active pharmaceutical ingredients that contain a wide range of biological and pharmacological properties.
Synthesis and structural characterization of new esters of oleanolic acid and its 11-oxo derivatives are reported. Compounds crystallize in four isostructural groups, each containing one to four structures. Single-crystal X-ray analysis revealed that molecules belonging to non-isostructural groups self-associate according to two schemes that describe also supramolecular architectures in crystals of glycyrrhetinic acid derivatives. Structural motifs arise as a result of van der Waals forces. Parameters introduced for the analysis of one- and two-dimensional assemblies allow the comparison of motifs in isostructural and non-isostructural crystals, including polymorphs, and a qualitative assessment of differences in molecular self-assembly. One-, two- or three-dimensional similarity has been confirmed by XPac calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.