This paper presents a critical review on potential-induced degradation (PID) in photovoltaic modules to illustrate the current research status and potential research paths to address PID-related issues.
Extensive investigations on industrial multicrystalline silicon solar cells have shown that, for standard 1 X cm material, acid-etched texturization, and in absence of strong ohmic shunts, there are three different types of breakdown appearing in different reverse bias ranges. Between À4 and À9 V there is early breakdown (type 1), which is due to Al contamination of the surface. Between À9 and À13 V defect-induced breakdown (type 2) dominates, which is due to metal-containing precipitates lying within recombination-active grain boundaries. Beyond À13 V we may find in addition avalanche breakdown (type 3) at etch pits, which is characterized by a steep slope of the I-V characteristic, avalanche carrier multiplication by impact ionization, and a negative temperature coefficient of the reverse current. If instead of acid-etching alkaline-etching is used, all these breakdown classes also appear, but their onset voltage is enlarged by several volts. Also for cells made from upgraded metallurgical grade material these classes can be distinguished. However, due to the higher net doping concentration of this material, their onset voltage is considerably reduced here.
Mono- and multicrystalline solar cells have been stressed by potential-induced degradation (PID). Cell pieces with PID-shunts are imaged by SEM using the EBIC technique in plan view as well as after FIB cross-section preparation. A linear shaped signature is found in plan-view EBIC images at every potential-induced shunt position on both mono- and multicrystalline solar cells. Cross-sectional SEM and TEM images reveal stacking faults in a {111} plane. Combined TEM/EDX measurements show that the stacking faults are strongly decorated with sodium. Thus, the electric conductivity of stacking faults is assumed to arise under the influence of sodium ion movement through a high electric field across the SiNx anti-reflective layer, resulting in PID
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.