Background: The understanding of regulatory and signaling networks has long been a core objective in Systems Biology. Knowledge about these networks is mainly of qualitative nature, which allows the construction of Boolean models, where the state of a component is either 'off' or 'on'. While often able to capture the essential behavior of a network, these models can never reproduce detailed time courses of concentration levels.
BackgroundPhenomenological information about regulatory interactions is frequently available and can be readily converted to Boolean models. Fully quantitative models, on the other hand, provide detailed insights into the precise dynamics of the underlying system. In order to connect discrete and continuous modeling approaches, methods for the conversion of Boolean systems into systems of ordinary differential equations have been developed recently. As biological interaction networks have steadily grown in size and complexity, a fully automated framework for the conversion process is desirable.ResultsWe present Odefy, a MATLAB- and Octave-compatible toolbox for the automated transformation of Boolean models into systems of ordinary differential equations. Models can be created from sets of Boolean equations or graph representations of Boolean networks. Alternatively, the user can import Boolean models from the CellNetAnalyzer toolbox, GINSim and the PBN toolbox. The Boolean models are transformed to systems of ordinary differential equations by multivariate polynomial interpolation and optional application of sigmoidal Hill functions. Our toolbox contains basic simulation and visualization functionalities for both, the Boolean as well as the continuous models. For further analyses, models can be exported to SQUAD, GNA, MATLAB script files, the SB toolbox, SBML and R script files. Odefy contains a user-friendly graphical user interface for convenient access to the simulation and exporting functionalities. We illustrate the validity of our transformation approach as well as the usage and benefit of the Odefy toolbox for two biological systems: a mutual inhibitory switch known from stem cell differentiation and a regulatory network giving rise to a specific spatial expression pattern at the mid-hindbrain boundary.ConclusionsOdefy provides an easy-to-use toolbox for the automatic conversion of Boolean models to systems of ordinary differential equations. It can be efficiently connected to a variety of input and output formats for further analysis and investigations. The toolbox is open-source and can be downloaded at http://cmb.helmholtz-muenchen.de/odefy.
The isthmic organizer mediating differentiation of mid- and hindbrain during vertebrate development is characterized by a well-defined pattern of locally restricted gene expression domains around the mid-hindbrain boundary (MHB). This pattern is established and maintained by a regulatory network between several transcription and secreted factors that is not yet understood in full detail. In this contribution we show that a Boolean analysis of the characteristic spatial gene expression patterns at the murine MHB reveals key regulatory interactions in this network. Our analysis employs techniques from computational logic for the minimization of Boolean functions. This approach allows us to predict also the interplay of the various regulatory interactions. In particular, we predict a maintaining, rather than inducing, effect of Fgf8 on Wnt1 expression, an issue that remained unclear from published data. Using mouse anterior neural plate/tube explant cultures, we provide experimental evidence that Fgf8 in fact only maintains but does not induce ectopic Wnt1 expression in these explants. In combination with previously validated interactions, this finding allows for the construction of a regulatory network between key transcription and secreted factors at the MHB. Analyses of Boolean, differential equation and reaction-diffusion models of this network confirm that it is indeed able to explain the stable maintenance of the MHB as well as time-courses of expression patterns both under wild-type and various knock-out conditions. In conclusion, we demonstrate that similar to temporal also spatial expression patterns can be used to gain information about the structure of regulatory networks. We show, in particular, that the spatial gene expression patterns around the MHB help us to understand the maintenance of this boundary on a systems level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.