The control of light-matter interaction at the quantum level usually requires coherent laser fields. But already an exchange of virtual photons with the electromagnetic vacuum field alone can lead to quantum coherences, which subsequently suppress spontaneous emission. We demonstrate such spontaneously generated coherences (SGC) in a large ensemble of nuclei operating in the x-ray regime, resonantly coupled to a common cavity environment. The observed SGC originates from two fundamentally different mechanisms related to cooperative emission and magnetically controlled anisotropy of the cavity vacuum. This approach opens new perspectives for quantum control, quantum state engineering and simulation of quantum many-body physics in an essentially decoherence-free setting.
Nanobodies can be seen as next‐generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site‐specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.