Madagascar is a biodiversity hotspot under threat, with about 80% of the population living below the poverty line and dependent on the use of diminishing local resources. Environmental education (EE) can act as an important tool for biodiversity conservation, however, its implementation is challenging in low-income countries. Here, we provide a review of 248 EE interventions throughout Madagascar. We highlight how EE can promote pro-environmental behaviors and show the major obstacles it faces, using Madagascar’s Lake Alaotra as a case study area. All EE activities are implemented by non-governmental organizations (NGOs) and international institutions. EE and community engagement have been shown by practitioners and scientific research alike to be valuable tools but are severely restricted in their impact when their outreach is limited by insecure and insufficient funding, and often funding periods that are too short. Another major hindrance to EE producing positive changes in people’s real-life decisions in low-income countries like Madagascar, arises when lessons are taught to a population that is at once understanding and severely constrained in its choices due to poverty, and corresponding malnutrition, that forces people to make unsustainable decisions on a daily basis. Our conclusions should help to improve the practice of EE in Madagascar and other low-income countries.
Madagascar is a global biodiversity hotspot of conservation concern. The decline of natural forest habitats due to shifting cultivation has been one of the major land use changes during the last decades. We analyzed satellite images between 1990 and 2018 from northeastern Madagascar to evaluate the contribution of nine variables (e.g., topographic, demographic, forest protection) to explain past forest loss, predict future deforestation probabilities to define important areas that require further conservation attention. Forest cover declined by 21% since 1990 and the once continuous rain forest belt of the region is disrupted twice, in the center and at the southern limit of the study region. Status of forest protection and proximity to the forest edge were identified as most important predictors, but all variables contributed to explaining the observed pattern of deforestation. At least 20% of the 3136 villages in the area were established since 1990 at the expense of previously forested areas. This housing sprawl was mainly driven by accessibility, decreasing landscape connectivity. To conserve the unique biodiversity of the region, the expansion of protected forests and active reforestation measures are urgently needed. Sustainable land use planning and forest management integrating the needs of local land users and conservation priorities should be promoted. We see the highest potential for external stakeholders (e.g., national NGOs) to implement targeted interventions embedded in community-based approaches. Our land cover maps and predictive modeling highlight crucial areas that could act as stepping stone habitats for dispersing or retreating species and therefore important locations to intensify conservation measures.
Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic explosion has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we take an integrative approach to investigate species diversity in two pairs of sister lineages that occur in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among them. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported – a result that is particularly striking when using the genealogical discordance index (gdi). Non-sister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages, and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC and calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated concatenated likelihood estimates, however. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case.
Delimitation of cryptic species is increasingly based on genetic analyses but the integration of distributional, morphological, behavioral, and ecological data offers unique complementary insights into species diversification. We surveyed communities of nocturnal mouse lemurs (Microcebus spp.) in five different sites of northeastern Madagascar, measuring a variety of morphological parameters and assessing reproductive states for 123 individuals belonging to five different lineages. We documented two different non‐sister lineages occurring in sympatry in two areas. In both cases, sympatric species pairs consisted of a locally restricted (M. macarthurii or M. sp. #3) and a more widespread lineage (M. mittermeieri or M. lehilahytsara). Estimated Extents of Occurrence (EOO) of these lineages differed remarkably with 560 and 1,500 km2 versus 9,250 and 50,700 km2, respectively. Morphometric analyses distinguished unambiguously between sympatric species and detected more subtle but significant differences among sister lineages. Tail length and body size were most informative in this regard. Reproductive schedules were highly variable among lineages, most likely impacted by phylogenetic relatedness and environmental variables. While sympatric species pairs differed in their reproductive timing (M. sp. #3/M. lehilahytsara and M. macarthurii/M. mittermeieri), warmer lowland rainforests were associated with a less seasonal reproductive schedule for M. mittermeieri and M. lehilahytsara compared with populations occurring in montane forests. Distributional, morphological, and ecological data gathered in this study support the results of genomic species delimitation analyses conducted in a companion study, which identified one lineage, M. sp. #3, as meriting formal description as a new species. Consequently, a formal species description is included. Worryingly, our data also show that geographically restricted populations of M. sp. #3 and its sister species (M. macarthurii) are at high risk of local and perhaps permanent extinction from both deforestation and habitat fragmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.