A fundamental question in the field of polaritonic chemistry is whether collective coupling implies local modifications of chemical properties scaling with the ensemble size. Here we demonstrate from first-principles that an impurity present in a collectively coupled chemical ensemble features such locally scaling modifications. In particular, we find the formation of a novel dark state for a nitrogen dimer chain of variable size, whose local chemical properties are altered considerably at the impurity due to its embedding in the collectively coupled environment. Our simulations unify theoretical predictions from quantum optical models (e.g., collective dark states and bright polaritonic branches) with the single molecule quantum chemical perspective, which relies on the (quantized) redistribution of charges leading to a local hybridization of light and matter. Moreover, our findings suggest that recently developed ab initio methods for strong light-matter coupling are suitable to access these local polaritonic effects and provide a detailed understanding of photon-modified chemistry.
In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.
This perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry, which emerges from the hybrid nature of strongly coupled light-matter states. To tackle this complexity, the importance of ab initio methods is highlighted. Based on those, novel ideas and research avenues are developed with respect to quantum collectivity, as well as for resonance phenomena immanent in reaction rates under vibrational strong coupling. Indeed, fundamental theoretical questions arise about the mesoscopic scale of quantum-collectively coupled molecules, when considering the depolarization shift in the interpretation of experimental data. Furthermore, to rationalise recent findings based on quantum electrodynamical density-functional theory (QEDFT), a simple, but computationally efficient, Langevin framework is proposed, based on well-established methods from molecular dynamics. It suggests the emergence of cavity induced non-equilibrium nuclear dynamics, where thermal (stochastic) resonance phenomena could emerge in the absence of external periodic driving. Overall, we believe the latest ab initio results indeed suggest a paradigmatic shift for ground-state chemical reactions under vibrational strong coupling, from the collective quantum interpretation towards a more local, (semi)-classically and non-equilibrium dominated perspective. Finally, various extensions towards a refined description of cavity-modified chemistry are introduced in the context of QEDFT and futuredirections of the field are sketched.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.