Cancer immunotherapy utilizes the immune system to fight cancer and has already moved from the laboratory to clinical application. However, and despite excellent therapeutic outcomes in some hematological and solid cancers, the regular clinical use of cancer immunotherapies reveals major limitations. These include the lack of effective immune therapy options for some cancer types, unresponsiveness to treatment by many patients, evolving therapy resistance, the inaccessible and immunosuppressive nature of the tumor microenvironment (TME), and the risk of potentially life-threatening immune toxicities. Given the potential of nanotechnology to deliver, enhance, and fine-tune cancer immunotherapeutic agents, the combination of cancer immunotherapy with nanotechnology can overcome some of these limitations. In this review, we summarize innovative reports and novel strategies that successfully combine nanotechnology and cancer immunotherapy. We also provide insight into how nanoparticular combination therapies can be used to improve therapy responsiveness, to reduce unwanted toxicity, and to overcome adverse effects of the TME.
Accumulating evidence suggests that both the nature of oncogenic lesions and the cell‐of‐origin can strongly influence cancer histopathology, tumor aggressiveness and response to therapy. Although oncogenic Kras expression and loss of Trp53 tumor suppressor gene function have been demonstrated to initiate murine lung adenocarcinomas (LUADs) in alveolar type II (AT2) cells, clear evidence that Club cells, representing the second major subset of lung epithelial cells, can also act as cells‐of‐origin for LUAD is lacking. Equally, the exact anatomic location of Club cells that are susceptible to Kras transformation and the resulting tumor histotype remains to be established. Here, we provide definitive evidence for Club cells as progenitors for LUAD. Using in vivo lineage tracing, we find that a subset of Kras12V‐expressing and Trp53‐deficient Club cells act as precursors for LUAD and we define the stepwise trajectory of Club cell‐initiated tumors leading to lineage marker conversion and aggressive LUAD. Our results establish Club cells as cells‐of‐origin for LUAD and demonstrate that Club cell‐initiated tumors have the potential to develop aggressive LUAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.