This paper contains our system description for the second Fact Extraction and VERification (FEVER) challenge. We propose a two-staged sentence selection strategy to account for examples in the dataset where evidence is not only conditioned on the claim, but also on previously retrieved evidence. We use a publicly available document retrieval module and have fine-tuned BERT checkpoints for sentence selection and as the entailment classifier. We report a FEVER score of 68.46% on the blind test set.
In Automated Claim Verification, we retrieve evidence from a knowledge base to determine the veracity of a claim. Intuitively, the retrieval of the correct evidence plays a crucial role in this process. Often, evidence selection is tackled as a pairwise sentence classification task, i.e., we train a model to predict for each sentence individually whether it is evidence for a claim. In this work, we fine-tune document level transformers to extract all evidence from a Wikipedia document at once. We show that this approach performs better than a comparable model classifying sentences individually on all relevant evidence selection metrics in FEVER. Our complete pipeline building on this evidence selection procedure produces a new state-of-the-art result on FEVER, a popular claim verification benchmark.
Automated claim checking is the task of determining the veracity of a claim given evidence retrieved from a textual knowledge base of trustworthy facts. While previous work has taken the knowledge base as given and optimized the claim-checking pipeline, we take the opposite approach – taking the pipeline as given, we explore the choice of the knowledge base. Our first insight is that a claim-checking pipeline can be transferred to a new domain of claims with access to a knowledge base from the new domain. Second, we do not find a
”universally best”
knowledge base – higher domain overlap of a task dataset and a knowledge base tends to produce better label accuracy. Third, combining multiple knowledge bases does not tend to improve performance beyond using the closest-domain knowledge base. Finally, we show that the claim-checking pipeline’s confidence score for selecting evidence can be used to assess whether a knowledge base will perform well for a new set of claims, even in the absence of ground-truth labels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.