The character and health of ecosystems worldwide is tightly coupled to changes in Earth’s climate. Theory suggests that ecosystem resilience—the ability of ecosystems to resist and recover from external shocks such as droughts and fires—can be inferred from their natural variability. Here, we quantify vegetation resilience globally with complementary metrics based on two independent long-term satellite records. We first empirically confirm that the recovery rates from large perturbations can be closely approximated from internal vegetation variability across vegetation types and climate zones. On the basis of this empirical relationship, we quantify vegetation resilience continuously and globally from 1992 to 2017. Long-term vegetation resilience trends are spatially heterogeneous, with overall increasing resilience in the tropics and decreasing resilience at higher latitudes. Shorter-term trends, however, reveal a marked shift towards a global decline in vegetation resilience since the early 2000s, particularly in the equatorial rainforest belt.
The scaling behavior of rainfall has been extensively studied both in terms of event magnitudes and in terms of spatial extents of the events. Different heavy‐tailed distributions have been proposed as candidates for both instances, but statistically rigorous treatments are rare. Here we combine the domains of event magnitudes and event area sizes by a spatiotemporal integration of 3‐hourly rain rates corresponding to extreme events derived from the quasi‐global high‐resolution rainfall product Tropical Rainfall Measuring Mission 3B42. A maximum likelihood evaluation reveals that the distribution of spatiotemporally integrated extreme rainfall cluster sizes over the oceans is best described by a truncated power law, calling into question previous statements about scale‐free distributions. The observed subpower law behavior of the distribution's tail is evaluated with a simple generative model, which indicates that the exponential truncation of an otherwise scale‐free spatiotemporal cluster size distribution over the oceans could be explained by the existence of land masses on the globe.
The attribution of changing intensity of rainfall extremes to global warming is a key challenge of climate research. From a thermodynamic perspective, via the Clausius-Clapeyron relationship, rainfall events are expected to become stronger due to the increased water-holding capacity of a warmer atmosphere. Here, we employ global, 1-hourly temperature and 3-hourly rainfall data to investigate the scaling between temperature and extreme rainfall. Although the Clausius-Clapeyron scaling of +7% rainfall intensity increase per degree warming roughly holds on a global average, we find very heterogeneous spatial patterns. Over tropical oceans, we reveal areas with consistently strong negative scaling (below −40%∘C−1). We show that the negative scaling is due to a robust linear correlation between pre-rainfall cooling of near-surface air temperature and extreme rainfall intensity. We explain this correlation by atmospheric and oceanic dynamics associated with cyclonic activity. Our results emphasize that thermodynamic arguments alone are not enough to attribute changing rainfall extremes to global warming. Circulation dynamics must also be thoroughly considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.