First Story Detection is hard because the most accurate systems become progressively slower with each document processed.We present a novel approach to FSD, which operates in constant time/space and scales to very high volume streams. We show that when computing novelty over a large dataset of tweets, our method performs 192 times faster than a state-of-the-art baseline without sacrificing accuracy. Our method is capable of performing FSD on the full Twitter stream on a single core of modest hardware.
Tracking topics on social media streams is non-trivial as the number of topics mentioned grows without bound. This complexity is compounded when we want to track such topics against other fast moving streams. We go beyond traditional small scale topic tracking and consider a stream of topics against another document stream. We introduce two tracking approaches which are fully applicable to true streaming environments. When tracking 4.4 million topics against 52 million documents in constant time and space, we demonstrate that counter to expectations, simple single-pass clustering can outperform locality sensitive hashing for nearest neighbour search on streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.