The building sector accounts for about 30% of the global final energy consumption. Most of the consumed energy originates from fossil fuels. The operation of buildings is known to suffer from various deficiencies, degrading their energy performance. An untapped potential lies, therefore, in the optimization of building operation to significantly reduce CO 2 emissions and to increase the cost effectiveness and user comfort. Over the past 40 years, extensive research has been carried out to investigate and develop methods for building performance optimization based on measured data from building services, such as heating, ventilation, air conditioning, and lighting systems. The ongoing digitalization trend in the building sector offers the opportunity to easily access large amounts of high-quality measurement data and semantic building information as digital descriptions. This facilitates the development and implementation of automated routines for the continuous supervision and optimization of building operation, including reliable fault detection and diagnosis and model-predictive control. This review article is focused on three major research topics in the field of energy-efficient buildings, namely, semantic interoperability between heterogeneous and complex systems, methods for fault detection and diagnosis, and model-predictive control. V
Abstract:The energy consumption of buildings lies often far above the performance objectives of the design phase. This is due to several factors among other serious deficits in the energy operation of building services. TOPAs adopts the principle of continuous performance auditing by not only considering energy use but also knowledge and understanding of the buildings use and their climatic state. Thus it provides a holistic performance auditing process through supporting tools and methodologies that try to minimise the gap between predicted and actual energy use. TOPAs offers an open BMS (Building Management System) IoT driven framework. This framework is composed of core services to connect to any BMS and aggregate all the information in an open platform. Add-on services are also available to improve the understanding of buildings and reduce further the gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.