SummaryMedicinal plants have been successfully used in the ethno medicine for a wide range of diseases since ancient times. The research on natural products has allowed the discovery of biologically relevant compounds inspired by plant secondary metabolites, what contributed to the development of many chemotherapeutic drugs. Flavonoids represent a group of therapeutically very effective plant secondary metabolites and selected molecules were shown to exert also antiparasitic activity. This work summarizes the recent knowledge generated within past three decades about potential parasitocidal activities of several flavonoids with different chemical structures, particularly on medically important flatworms such as Schistosoma spp., Fasciola spp., Echinococcus spp., Raillietina spp., and model cestode Mesocestoides vogae. Here we focus on curcumin, genistein, quercetin and silymarin complex of flavonolignans. All of them possess a whole spectrum of biological activities on eukaryotic cells which have multi-therapeutic effects in various diseases. In vitro they can induce profound alterations in the tegumental architecture and its functions as well as their activity can significantly modulate or damage worm´s metabolism directly by interaction with enzymes or signaling molecules in dose-dependent manner. Moreover, they seem to differentially regulate the RNA activity in numbers of worm´s genes. This review suggests that examined flavonoids and their derivates are promising molecules for antiparasitic drug research. Due to lack of toxicity, isoflavons could be used directly for therapy, or as adjuvant therapy for diseases caused by medically important cestodes and trematodes.
The health benefits of kefir consumption have been well-known for hundreds of years. The objective of this study was to investigate the effect of kefir milk and the probiotic strain Lacticaseibacillus paracasei Ž2 isolated from kefir grains on the immune response and selected parameters of the lipid and liver enzymatic profiles of mice. Mice fed with kefir milk showed significantly increased phagocytic activity and percentages of B cells in the blood and increased gene expression for mucins and percentages of CD8+ lymphocytes in the gut. By applying kefir, we achieved a significant reduction in serum LDL cholesterol and an LDL/HDL ratio that favored an increase in HDL cholesterol. Regarding the hepatic enzymes, in particular a significant reduction in ALT activity was observed. L. paracasei Ž2 alone stimulated the immune response more markedly compared with kefir milk. Regarding the systemic level, we observed increases in the proportion of all T cells (CD3+), CD4+ lymphocytes and the ratio of CD4+:CD8+ cells, and regarding the local intestinal level we noted a significant increase in gene expression for mucins (MUC-1 and MUC-2) and IgA. Moreover, we confirmed the formation of a biofilm on the surface of the forestomach only after the application of L. paracasei Ž2 alone, but not after kefir administration. The results confirmed the hypothesis that the final effect of the probiotic does not correspond with the effect of the individual strain but is the result of mutual interactions of the microorganisms presented in a preparation, and therefore in the case of multi-strain probiotics, in vivo testing of the complex preparation is necessary.
The anticancer potential of silymarin is well known, including its anti-inflammatory as well as antiproliferative effect mediated by influencing the cell cycle, suppression of apoptosis, and inhibition of cell-survival kinases. However, less is known about silybin, the main component of the silymarin complex, where studies indicate its dual effect on the proliferation and immune response of various cell types in a dose-dependent manner. Moreover, there is a lack of studies comparing the effect of silybin on the same type of healthy and tumor cells, especially intestinal ones. Therefore, our study aimed to investigate the concentration-dependent effect of silybin on the normal intestinal porcine epithelial cell line-1 (IPEC-1) and the human epithelial colorectal adenocarcinoma cell line (CaCo-2). The metabolic viability, cell cycle, mitochondrial membrane potential, apoptosis, and the relative gene expression for pro- and anti-inflammatory cytokines were monitored in cells treated with silybin. Silybin stimulates metabolic viability as well as proliferation in IPEC-1 cells, protects the mitochondrial membrane, and thus exerts a cytoprotective effect, and has only a minimal effect on the gene expression of pro-inflammatory cytokines but significantly increases the expression of anti-inflammatory TGF-β. In contrast, it inhibits metabolic viability in tumor intestinal CaCo-2 cells, has an antiproliferative effect accompanied by increased apoptosis, and significantly reduces the expression of genes for pro-inflammatory interleukins as well as TGF-β. The antiproliferative and anti-inflammatory effect of silybin on tumor intestinal cells without a negative effect on healthy cells is a prerequisite for its potential use in the adjuvant therapy of colon cancer; however, further studies are necessary.
Background: University studying is demanding on the mental as well as the physical side of the students. However, studying medicine is even more challenging – the study is six years long, and it is tough to remember more information. The study changed the social life of students, and the students didn't have enough time to relax. The examinations of students are full of stress. Stress harms health, especially in the gastrointestinal tract (autonomic nervous system). Aims: The first study evaluated eating habits during and outside an examination period and the effect on the health of medical students in Slovakia. Methods: We made the questionnaire and distributed it online to medical students at the Faculty of Medicine in Bratislava, Slovakia. A total of 587 students from the 1st to 6th year completed self-report measures of BMI, academic stress, eating habits and the occurrence or development of digestive problems during the study. Results: Our results showed that most respondents were of average range weight and ate a well-balanced diet (90%); more than half of the participants had breakfast regularly, and almost half of the students ate junk food a few times per week. Our participants consumed less food but more junk food and energy drinks during the exam period, which can cause obesity and digestive problems. Conclusion: Our findings confirm that subjective academic feelings of stress play an important role in eating habit changes and in the origin of digestive disorders in our medical students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.