Monodispersed spherical Ag-doped bioactive glass nanoparticles (Ag-BGNs) were synthesized by a modified Stöber method combined with surface modification. The surface modification was carried out at 25, 60, and 80 °C, respectively, to investigate the influence of processing temperature on particle properties. Energy-dispersive X-ray spectroscopy (EDS) results indicated that higher temperatures facilitate the incorporation of Ag. Hydroxyapatite (HA) formation on Ag-BGNs was detected upon immersion of the particles in simulated body fluid for 7 days, which indicated that Ag-BGNs maintained high bioactivity after surface modification. The conducted antibacterial assay confirmed that Ag-BGNs had an antibacterial effect on E. coli. The above results thereby suggest that surface modification is an effective way to incorporate Ag into BGNs and that the modified BGNs can remain monodispersed as well as exhibit bioactivity and antibacterial capability for biomedical applications.
Polycations, mimicking activity of antibacterial peptides, belong to an important class of molecules investigated as a support or as an alternative to antibiotics. In this work, studies of modified linear amphiphilic statistical polymethyloxazoline (PMOX) and polyethyleneimine copolymers (PMOX_PEI) series are presented. Variation of PEI content in the structure results in controllable changes of polymeric aggregates zeta potential. The structure with the highest positive charge shows the best antimicrobial activity, well visible in tests against model Gram‐positive and Gram‐negative bacteria, fungi, and mycobacterium strains. The polymer toxicity is evaluated with MTT and hemolysis assay as a reference. Quartz crystal microbalance (QCM‐D) is used to investigate interaction between polycations and a model lipid membrane. Polymer activity correlates well with molecular structure, showing that amphiphilic component is altering polymer behavior in contact with the lipid bilayer.
Front Cover: Polymers with antimicrobial activity may serve as support in fight against antibiotic resistant bacterial. This is reported by Dominika Kozon, Jolanta Mierzejewska, Tomasz Kobiela, Agnieszka Grochowska, Ksenia Dudnyk, Agnieszka Głogowska, Anna Sobiepanek, Aleksandra Kuźmińska, Tomasz Ciach, Ewa Augustynowicz‐Kopeć, and Dominik Jańczewski in article 1900254. Graphic author: Beata Janczewska
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.