A nanocrystalline zeolite of Na-X type (CFAZ) was synthesized by ultrasonic-assisted double stage fusion-hydrothermal alkaline conversion of lignite coal fly ash. Modified CFAZ with magnetic nanoparticles (MNP-CFAZ) was obtained by adding presynthesized magnetic nanoparticles between the synthesis stages. CFAZs loaded by particles of copper (Cu-CFAZ) and cobalt (Co-CFAZ) oxides were prepared by postsynthesis modification of the parent CFAZ, applying a wet impregnation technique. The parent and modified CFAZs were examined for their phase composition by X-ray diffraction, morphology by scanning electron microscopy, and surface characteristics by N2 physisorption. Comparative studies have been carried out on the adsorption capacity of the starting CFAZ and its derivatives with respect to Cd2+- and Pb2+-ions from aqueous solutions. Adsorption isotherms of Cd2+-ions on the studied samples were plotted and described by the adsorption equations of Langmuir, Freundlich, Langmuir–Freundlich, and Temkin. The best correlation between the experimental and model isotherms for the parent and modified CFAZ was found with the Langmuir linear model, assuming a monolayer adsorption mechanism. Parent and modified CFAZs were also studied as catalysts for heterogeneous thermal Fenton oxidation of methylene blue. At 90 °C, the higher catalytic activity exhibits the nonmodified sample, but with the decrease in temperature to 60 °C, the modified samples are more effective catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.