The purpose of the paper is to determine the influence of different factors used by a formal credit institution to evaluate loan applications in the agricultural sector. The research attempts to capture the actual factors considered by credit institutions rather than the traditional factors found in literature. Loan applications from 128 farmers, predominantly commercial farmers, were obtained from a credit institution with branches situated in various provinces of South Africa. Data consisted of loan application information which is broader than the financial information normally obtained in credit research, and the final decision of the credit provider. Principal component logistic regression was used to investigate the likeliness with which loan application variables influence the outcome of the loan application. Results indicate that loan applications that are more likely to be successful are older more experienced farmers, who can provide sufficient collateral, have more years of business with the credit provider, have an acceptable credit history, request smaller loan amounts, have lower interest expense ratio, higher production cost ratios, and have diversification strategies. This paper contributes to knowledge on information used by financial credit providers (institutions) in classifying agricultural loan applications as successful as guided by actual factors used in credit decision making by the credit provider.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.