Recent studies in the Northern Hemisphere have shown that songbirds living in noisy urban environments sing at higher frequencies than their rural counterparts. However, several aspects of this phenomenon remain poorly understood. These include the geographical scale over which such patterns occur (most studies have compared local populations), and whether they involve phenotypic plasticity or microevolutionary change. We conducted a field study of silvereye (Zosterops lateralis) vocalizations over more than 1 million km 2 of urban and rural south-eastern Australia, and compared possible effects of urban noise on songs (which are learned) and contact calls (which are innate). Across 14 paired urban and rural populations, silvereyes consistently sang both songs and contact calls at higher frequencies in urban environments. Syllable rate (syllables per second) decreased in urban environments, consistent with the hypothesis that reflective structures degrade song and encourage longer intervals between syllables. This comprehensive study is, to our knowledge, the first to demonstrate varied adaptations of urban bird vocalizations over a vast geographical area, and to provide insight into the mechanism responsible for these changes.
Over the past two decades, studies of songbird populations have detected decreases in the reproductive success of individuals living in urban areas. Anthropogenic noise is considered to be particularly detrimental, however the exact relationship between noise and reproductive success is still unclear because noise is often correlated with many other detrimental factors (e.g., predation, reduced territory quality). We used an experiment to specifically test the effects of urban noise on reproduction of captive zebra finches (Taeniopygia guttata). We found that latency to breed and the size of successfully fledged clutches were consistent between groups, however success of initial nesting attempts was reduced by traffic noise. Further, this reduced success leading to increased numbers of nesting attempts by birds in the noise condition was due to higher levels of embryo mortality in the traffic noise treatment group, which also suffered a lag in nestling growth rates during the first two weeks post-hatch. While parental baseline circulating corticosterone was not chronically affected by noise treatment, we identified some interaction effects whereby certain reproductive measures (laying latency and clutch size) were most strongly affected by treatment when mothers had higher levels of baseline corticosterone. These results indicate that traffic noise may reduce reproductive success through changes in parental behaviour, and that traffic noise may disproportionately affect chronically stressed individuals during reproduction. J. Exp. Zool. 323A: 722-730, 2015. © 2015 Wiley Periodicals, Inc.
Next-generation sequencing (NGS) approaches are increasingly being used to generate multi-locus data for phylogeographic and evolutionary genetics research. We detail the applicability of a restriction enzyme-mediated genome complexity reduction approach with subsequent NGS (DArTseq) in vertebrate study systems at different evolutionary and geographical scales. We present two case studies using SNP data from the DArTseq molecular marker platform. First, we used DArTseq in a large phylogeographic study of the agamid lizard Ctenophorus caudicinctus, including 91 individuals and spanning the geographical range of this species across arid Australia. A low-density DArTseq assay resulted in 28 960 SNPs, with low density referring to a comparably reduced set of identified and sequenced markers as a cost-effective approach. Second, we applied this approach to an evolutionary genetics study of a classic frog hybrid zone (Litoria ewingii–Litoria paraewingi) across 93 individuals, which resulted in 48 117 and 67 060 SNPs for a low- and high-density assay, respectively. We provide a docker-based workflow to facilitate data preparation and analysis, then analyse SNP data using multiple methods including Bayesian model-based clustering and conditional likelihood approaches. Based on comparison of results from the DArTseq platform and traditional molecular approaches, we conclude that DArTseq can be used successfully in vertebrates and will be of particular interest to researchers working at the interface between population genetics and phylogenetics, exploring species boundaries, gene exchange and hybridization.
International audienceOur understanding of fundamental organismal biology has been disproportionately influenced by studies of a relatively small number of ‘model’ species extensively studied in captivity. Laboratory populations of model species are commonly subject to a number of forms of past and current selection that may affect experimental outcomes. Here, we examine these processes and their outcomes in one of the most widely used vertebrate species in the laboratory – the zebra finch (Taeniopygia guttata). This important model species is used for research across a broad range of fields, partly due to the ease with which it can be bred in captivity. However despite this perceived amenability, we demonstrate extensive variation in the success with which different laboratories and studies bred their subjects, and overall only 64% of all females that were given the opportunity, bred successfully in the laboratory. We identify and review several environmental, husbandry, life-history and behavioural factors that potentially contribute to this variation. The variation in reproductive success across individuals could lead to biases in experimental outcomes and drive some of the heterogeneity in research outcomes across studies. The zebra finch remains an excellent captive animal system and our aim is to sharpen the insight that future studies of this species can provide, both to our understanding of this species and also with respect to the reproduction of captive animals more widely. We hope to improve systematic reporting methods and that further investigation of the issues we raise will lead both to advances in our fundamental understanding of avian reproduction as well as to improvements in future welfare and experimental efficiency
Animals in natural communities gain information from members of other species facing similar ecological challenges [1-5], including many vertebrates that recognize the alarm calls of heterospecifics vulnerable to the same predators [6]. Learning is critical in explaining this widespread recognition [7-13], but there has been no test of the role of social learning in alarm-call recognition, despite the fact that it is predicted to be important in this context [14, 15]. We show experimentally that wild superb fairy-wrens, Malurus cyaneus, learn socially to recognize new alarm calls and can do so through the previously undemonstrated mechanism of acoustic-acoustic association of unfamiliar with known alarm calls. Birds were trained in the absence of any predator by broadcasting unfamiliar sounds, to which they did not originally flee, in combination with a chorus of conspecific and heterospecific aerial alarm calls (typically given to hawks in flight). The fairy-wrens responded to the new sounds after training, usually by fleeing to cover, and responded equally as strongly in repeated tests over a week. Control playbacks showed that the response was not due simply to greater wariness. Fairy-wrens therefore learnt to associate new calls with known alarm calls, without having to see the callers or a predator. This acoustic-acoustic association mechanism of social learning could result in the rapid spread of alarm-call recognition in natural communities, even when callers or predators are difficult to observe. Moreover, this mechanism offers potential for use in conservation by enhancing training of captive-bred individuals before release into the wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.