The medial axis of a geometric shape captures its connectivity. In spite of its inherent instability, it has found applications in a number of areas that deal with shapes. In this survey paper, we focus on results that shed light on this instability and use the new insights to generate simplified and stable modifications of the medial axis.
We study the simplification of simplicial complexes by repeated edge contractions. First, we extend to arbitrary simplicial complexes the statement that edges satisfying the link condition can be contracted while preserving the homotopy type. Our primary interest is to simplify flag complexes such as Rips complexes for which it was proved recently that they can provide topologically correct reconstructions of shapes. Flag complexes (sometimes called clique complexes) enjoy the nice property of being completely determined by the graph of their edges. But, as we simplify a flag complex by repeated edge contractions, the property that it is a flag complex is likely to be lost. Our second contribution is to propose a new representation for simplicial complexes particularly well adapted for complexes close to flag complexes. The idea is to encode a simplicial complex K by the graph G of its edges together with the inclusion-minimal simplices in the set difference Flag (G)\ K. We call these minimal simplices blockers. We prove that the link condition translates nicely in terms of blockers and give formulae for updating our data structure after an edge contraction. Finally, we observe in some simple cases that few blockers appear during the simplification of Rips complexes, demonstrating the efficiency of our representation in this context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.