Vinorelbine (VRL) (IV Navelbine) is a semi-synthetic vinca alkaloid, used in therapeutics for the treatment of non-small-cell lung cancer and advanced breast cancer. The aim of this study was to characterize the cytochrome P450 (CYP) isoenzymes involved in VRL metabolism. VRL was incubated at 1.28 x 10(-5) m for 90 min with human hepatic microsomes prepared from 14 donors (one woman and 13 men aged from 27 to 76 years old) and characterized for CYP1A2, CYP2D6, CYP2E1 and CYP3A4 activities. A four-combined-approach study was performed, including correlation between CYP activities and VRL metabolism among the 14 batches of microsomes, inhibition of VRL biotransformation by isoform-selective substrates and by specific inhibitory antibodies, and incubation with supersomes. Analysis of unchanged VRL and its metabolites was performed using an HPLC method coupled with both radioactive and UV detections. No correlation between CYP1A2 or CYP2E1 and VRL metabolism was observed in the 14 batches of microsomes used. A correlation was shown between VRL metabolism and CYP3A4 activity as determined with the dextromethorphan N-demethylase and nifedipine oxidase activities (r(2)=0.80 and 0.59, respectively). These results were strengthened by a correlation between the metabolism extent of VRL and CYP3A4 protein content determined by immunoblotting (r(2)=0.75). Furthermore, VRL biotransformation was inhibited by troleandomycine, the CYP3A4-specific inhibitor substrate (80% of inhibition) and by anti-CYP3A antibodies (36% of inhibition). On the contrary, a low correlation with CYP2D6 activity as determined by dextrometorphan O-demethylation (r(2)=0.31) was established. CYP2D6 supersomes did not metabolize the drug whereas 63.4% of VRL were metabolized by microsomes overexpressing CYP3A4 isoform. These data indicated that CYP3A4 is the main enzyme involved in the hepatic metabolism of VRL in human, whereas CYP2D6 is not involved.
The effects of paclitaxel, cyclosporine, cyclophosphamide, ifosfamide and tamoxifen on the metabolism of methoxymorpholinodoxorubicin (MMDx), a novel anticancer agent, were investigated using human liver microsomes. Paclitaxel, tamoxifen and cyclosporine dramatically inhibited MMDx metabolism, whereas ifosfamide had only a slight effect at high concentrations (200-300 microM) and cyclophosphamide had no effect. The inhibition was dependent on the concentrations of both MMDx and the coincubated drug. Thus, with 1 microM MMDx, paclitaxel (5 microM), tamoxifen (1 microM) and cyclosporine (1 microM) decreased the metabolic rate of MMDx by 36%, 53% and 62%, respectively. At higher concentrations (10, 5 and 5 microM, respectively, with paclitaxel, tamoxifen and cyclosporine) the inhibition was 52%, 91% and 91%, respectively. These three drugs preferentially inhibited the formation of three metabolites (M2, M3 and M6) among eight metabolites produced in liver microsomes. The inhibitory concentrations of paclitaxel, tamoxifen and cyclosporine on MMDx metabolism were in the range of those observed in patients upon administration of these drugs, which are known to be CYP3A4 substrates. These findings suggest that CYP3A4 drug substrates and MMDx in combination must be used with caution, particularly in view of the fact that MMDx is considered as a prodrug whose activation is entirely dependent upon metabolic transformation by CYP3A4.
The morpholino anthracycline, methoxymorpholino-doxorubicin (MMDx) is a novel anticancer agent. The metabolism of this highly lipophilic doxorubicin analogue is not fully elucidated. MMDx is metabolically activated in vivo, resulting in an 80-fold increase in potency over the parent drug. In this study, MMDx in vitro metabolism was compared in rat, dog, monkey and human liver microsomes. When microsomal fractions were incubated with MMDx, 6-8 metabolites were formed depending on the species and on the substrate concentrations. Among these eight metabolites, three comigrated with authentic standards, namely MMDx-ol, PNU156686 and PNU159682, and the five others are in the process of being characterized. Quantitatively, monkey and human metabolize MMDx with a higher rate than rat and dog. Qualitatively, MMDx metabolic profile in dog microsomes was different from the three other species. MMDx-ol was predominant in dog and only minor in other species. In conclusion, MMDx metabolism was species-different. Rat and monkey liver microsomes may be used as models to study MMDx metabolism in humans. Dog liver microsomes may be a good model for studying the formation of MMDx-ol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.