SUMMARY Constitutive cell-autonomous immunity in metazoans predates interferon-inducible immunity and comprises primordial innate defense. Phagocytes mobilize interferon-inducible responses upon engagement of well-characterized signaling pathways by pathogen-associated molecular patterns (PAMPs). The signals controlling deployment of constitutive cell-autonomous responses during infection have remained elusive. Vita-PAMPs denote microbial viability, signaling the danger of cellular exploitation by intracellular pathogens. We show that cyclic-di-adenosine monophosphate in live Gram-positive bacteria is a vita-PAMP engaging the innate sensor Stimulator of Interferon Genes (STING) to mediate endoplasmic reticulum (ER) stress. Subsequent inactivation of the mechanistic Target of Rapamycin mobilizes autophagy, which sequesters stressed ER membranes, resolves ER stress, and curtails phagocyte death. This vita-PAMP-induced ER-phagy additionally orchestrates an interferon response by localizing ER-resident STING to autophagosomes. Our findings identify stress-mediated ER-phagy as a cell-autonomous response mobilized by STING-dependent sensing of a specific vita-PAMP, and elucidate how innate receptors engage multilayered homeostatic mechanisms to promote immunity and survival after infection.
Hyperthermia therapy (HT) is the exposure of a region of the body to elevated temperatures to achieve a therapeutic effect. HT anticancer properties and its potential as a cancer treatment have been studied for decades. Techniques used to achieve a localised hyperthermic effect include radiofrequency, ultrasound, microwave, laser and magnetic nanoparticles (MNPs). The use of MNPs for therapeutic hyperthermia generation is known as magnetic hyperthermia therapy (MHT) and was first attempted as a cancer therapy in 1957. However, despite more recent advancements, MHT has still not become part of the standard of care for cancer treatment. Certain challenges, such as accurate thermometry within the tumour mass and precise tumour heating, preclude its widespread application as a treatment modality for cancer. MHT is especially attractive for the treatment of glioblastoma (GBM), the most common and aggressive primary brain cancer in adults, which has no cure. In this review, the application of MHT as a therapeutic modality for GBM will be discussed. Its therapeutic efficacy, technical details, and major experimental and clinical findings will be reviewed and analysed. Finally, current limitations, areas of improvement, and future directions will be discussed in depth.
Photodynamic therapy (PDT) is a two-step treatment involving the local administration of a photosensitive agent followed by its activation at a specific light wavelength. PDT has been approved by the United States Food and Drug Administration (FDA) for the treatment of premalignant and malignant diseases, such as actinic keratoses, Barrett's esophagus, esophageal cancers, and endobronchial non-small cell lung cancers, as well as for the treatment of choroidal neovascularization. In oncology, clinical trials are currently underway to demonstrate PDT efficacy against a number of malignancies that include glioblastoma (GBM) and other brain tumors. Both photosensitizers and photosensitizing precursors have been used for PDT. Photofrin and Visudyne are photosensitizers with FDA approval for PDT of high-grade dysplasia in Barrett's esophagus and subfoveal choroidal neovascularization, respectively. 5-aminolevulinic acid (5-ALA), an intermediate in the heme synthesis pathway, is a photosensitizing precursor with FDA approval for PDT of actinic keratosis and fluorescence-guided visualization of malignant tissue during glioma surgery. In this review, the history and current use of 5-ALA PDT for the treatment of high-grade gliomas (HGGs) will be discussed.
Necroptosis is a programmed form of non-apoptotic cell death that requires the kinase activity of the receptor interacting protein kinase 3 (RIPK3). Although in vitro data suggests that cancer cells lacking expression of RIPK3 are invasive, the physiological role of RIPK3 in a disease-relevant setting remains unknown. Here we provide evidence that RIPK3 has a critical role in suppressing colorectal cancer (CRC). RIPK3-deficient mice were highly susceptible to colitis-associated CRC and exhibited greater production of pro-inflammatory mediators and tumor promoting factors. Tumorigenesis in RIPK3-deficiency resulted from uncontrolled activation of NF-κB, STAT3, AKT and Wnt-β-catenin signaling pathways that enhanced the ability of intestinal epithelial cells (IECs) to aberrantly proliferate in the face of the sustained inflammatory microenvironment and promote CRC. We found that RIPK3 expression is reduced in tumors from patients with inflammatory bowel diseases, and further confirmed that expression of RIPK3 is downregulated in human CRC and correlated with cancer progression. Thus, our results reveal that the necroptosis adaptor RIPK3 has key anti-inflammatory and anti-tumoral functions in the intestine, and define RIPK3 as a novel colon tumor suppressor.
Inflammatory bowel disease (IBD) involves interaction between host genetic factors and environmental triggers. CCDC88B maps within one IBD risk locus on human chromosome 11q13. Here we show that CCDC88B protein increases in the colon during intestinal injury, concomitant with an influx of CCDC88B+lymphoid and myeloid cells. Loss of Ccdc88b protects against DSS-induced colitis, with fewer pathological lesions and reduced intestinal inflammation in Ccdc88b-deficient mice. In a T cell transfer model of colitis, Ccdc88b mutant CD4+ T cells do not induce colitis in immunocompromised hosts. Expression of human CCDC88B RNA and protein is higher in IBD patient colons than in control colon tissue. In human CD14+ myeloid cells, CCDC88B is regulated by cis-acting variants. In a cohort of patients with Crohn’s disease, CCDC88B expression correlates positively with disease risk. These findings suggest that CCDC88B has a critical function in colon inflammation and the pathogenesis of IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.